Two newly prepared oligothienylpyridines, 5-(2-pyridyl)-5'-dodecyl-2,2'-bithiophene, HL(2), and 5-(2-pyridyl)-5''-dodecyl-2,2':5',2''-ter-thiophene, HL(3), bind to platinum(II) and iridium(III) as N∧C-coordinating ligands, cyclometallating at position C(4) in the thiophene ring adjacent to the pyridine, leaving a chain of either one or two pendent thiophenes. The synthesis of complexes of the form [PtL(n)(acac)] and [Ir(L(n))(2)(acac)] (n = 2 or 3) is described. The absorption and luminescence properties of these four new complexes are compared with the behavior of the known complexes [PtL(1)(acac)] and [Ir(L(1))(2)(acac)] {HL(1) = 2-(2-thienyl)pyridine}, and the profound differences in behavior are interpreted with the aid of time-dependent density functional theory (TD-DFT) calculations. Whereas [PtL(1)(acac)] displays solely intense phosphorescence from a triplet state of mixed ππ*/MLCT character, the phosphorescence of [PtL(2)(acac)] and [PtL(3)(acac)] is weak, strongly red shifted, and accompanied by higher-energy fluorescence. TD-DFT reveals that this difference is probably due to the metal character in the lowest-energy excited states being strongly attenuated upon introduction of the additional thienyl rings, such that the spin-orbit coupling effect of the metal in promoting intersystem crossing is reduced. A similar pattern of behavior is observed for the iridium complexes, except that the changeover to dual emission is delayed to the terthiophene complex [Ir(L(3))(2)(acac)], reflecting the higher degree of metal character in the frontier orbitals of the iridium complexes than their platinum counterparts.
A series of three Pt(II) complexes with a doubly cyclometalating terdentate ligand L1, L1H2 = 3,6-bis(p-anizolyl)-2-carboranyl-pyridine, and diethyl sulfide (1), triphenylphosphine (2), and t-butylisonitrile (3) as ancillary ligands were synthesized. X-ray diffraction studies of 1 and 2 show a coordination of the L1 ligand in a C-N-C mode in which the bulky and rigid o-carborane fragment is cyclometalated via a C atom. Importantly, no close intermolecular Pt-Pt contacts occur with this ligand type. The new Pt(II) pincer complexes display very high luminescence quantum yields at decay times of several tens of μs even in solution under ambient conditions. On the basis of the low-temperature (T = 1.3 K) emission decay behavior, the emission is assigned to a ligand centered triplet excited state (3)LC with small (1,3)MLCT admixtures. Because the phosphorescence is effectively quenched by molecular oxygen, optical sensors operating in a wide range of oxygen pressure can be developed. Owing to the very high luminescence quantum yields, the new materials might also become attractive as emitter materials for diverse optoelectronic applications.
Photophysical properties of four new platinum(II) complexes comprising extended ppy (Hppy = 2-phenylpyridine) and thpy (Hthpy = 2-(2'-thienyl)pyridine) cyclometalated ligands and acetylacetonate (acac) are reported. Substitution of the benzene ring of Pt-ppy complexes 1 and 2 with a more electron-rich thiophene of Pt-thpy complexes 3 and 4 leads to narrowing of the HOMO-LUMO gap and thus to a red shift of the lowest energy absorption band and phosphorescence band, as expected for low-energy excited states of the intraligand/metal-to-ligand charge transfer character. However, in addition to these conventional spectral shifts, another, at first unexpected, substitution effect occurs. Pt-thpy complexes 3 and 4 are dual emissive showing fluorescence about 6000 cm(-1) (∼0.75 eV) higher in energy relative to the phosphorescence band, while for Pt-ppy complexes 1 and 2 only phosphorescence is observed. For dual-emissive complexes 3 and 4, ISC rates kISC are estimated to be in order of 10(9)-10(10) s(-1), while kISC of Pt-ppy complexes 1 and 2 is much faster amounting to 10(12) s(-1) or more. The relative intensities of the fluorescence and phosphorescence signals of Pt-thpy complexes 3 and 4 depend on the excitation wavelength, showing that hyper-intersystem crossing (HISC) in these complexes is observably significant.
A general synthetic route for the synthesis of functionalized bi- and terpyridines is reported. Functionalized 1,2,4-triazene 4-oxides 7 and 8-obtained from the reaction of hydrazones 1 with pyridine aldehydes and followed by oxidation-are functionalized by introduction of a cyano group via nucleophilic aromatic substitution. The thus-obtained 5-cyano-1,2,4-triazines 9 and 10 undergo facile inverse-electron-demand Diels-Alder reactions with enamines and alkenes to yield functionalized bi- and terpyridines, respectively. The substituent at position 6 of the 1,2,4-triazene 4-oxides must be aromatic or heteroaromatic in order to allow their facile synthesis, but other substituents and reagents may vary. Each step of the synthetic route allows diversification, which makes the approach particularly useful for the facile synthesis of a large variety of functionalized bi- and terpyridines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.