Direct measurements of the dielectric surface potential and its dynamics in asymmetric dielectric barrier discharge (DBD) plasma actuators show that the charge builds up at the dielectric surface and extends far downstream of the plasma. The surface charge persists for a long time (tens of minutes) after the driving voltage has been turned off. For a sinusoidal voltage waveform, the dielectric surface charges positively. With the voltage waveform consisting of nanosecond pulses superimposed on a dc bias, the sign of the dielectric surface charge is the same as the sign (polarity) of the bias voltage. The surface charging significantly affects DBD plasma actuator performance.
Experimental studies were conducted of a flow induced in an initially quiescent room air by a single asymmetric dielectric barrier discharge driven by voltage waveforms consisting of repetitive nanosecond high-voltage pulses superimposed on dc or alternating sinusoidal or square-wave bias voltage. To characterize the pulses and to optimize their matching to the plasma, a numerical code for short pulse calculations with an arbitrary impedance load was developed. A new approach for nonintrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the schlieren technique, burst mode of plasma actuator operation, and two-dimensional numerical fluid modeling. The force and heating rate calculated by a plasma model was used as an input to two-dimensional viscous flow solver to predict the time-dependent dielectric barrier discharge induced flow field. This approach allowed us to restore the entire two-dimensional unsteady plasma induced flow pattern as well as characteristics of the plasma induced force. Both the experiments and computations showed the same vortex flow structures induced by the actuator. Parametric studies of the vortices at different bias voltages, pulse polarities, peak pulse voltages, and pulse repetition rates were conducted experimentally. The significance of charge buildup on the dielectric surface was demonstrated. The charge buildup decreases the effective electric field in the plasma and reduces the plasma actuator performance. The accumulated surface charge can be removed by switching the bias polarity, which leads to a newly proposed voltage waveform consisting of high-voltage nanosecond repetitive pulses superimposed on a high-voltage low frequency sinusoidal voltage. Advantages of the new voltage waveform were demonstrated experimentally.
There has been much recent interest in boundary layer (BL) actuation by offset surface dielectric barrier discharges (SDBD). These discharges either act directly on the gas momentum through the mechanism of charge separation or they increase the flow stability through the creation of disturbances to the BL at a particular frequency. The objective of the work reported here is to clarify the physical mechanism of plasma-flow interaction. Two problems are considered in detail: the exact spatial/temporal distribution of the plasma-related force, and the specific role of negative ions in the net force budget. The experiments were made with an offset electrode configuration of SDBD at voltage amplitude U≤12 kV and frequency f=0.02–2 kHz. The main data were obtained by time-resolved Pitot tube pressure measurements in air and nitrogen at atmospheric pressure. Three main features of SDBD behavior were considered. First, the strong inhomogeneity in the spatial distribution of the plasma-induced flow were detected. Second, the principal role of negative ions in plasma-induced flow generation was established. Third, the two types of gas disturbances were observed: the thermal effect and momentum transfer effect (ion wind). To explain the aforementioned features of SDBD behavior in air and nitrogen the results of numerical simulation have been used.
[1] Red sprites are large scale weakly ionized nonequilibrium electrical discharges that occur high above thunderstorm clouds, spanning the altitude range 50 kilometers to 90 kilometers above the Earth's surface. Their streamerlike nature has been pointed out by a number of groups. Streamer models used for the description of sprites are usually verified experimentally. However, sprites develop in a highly non-uniform air, where density changes by a factor of ∼2.7 every 7.2 km, whereas streamer studies have been performed at different but uniform densities. In this paper we present the results of the first attempt to simulate sprites in laboratory by using streamer discharges in a gradient density air (the results of this paper were presented in 2009 Fall AGU meeting). The purpose of the experiments is to obtain data that could be used for validation of numerical and analytical models (the first results of a numerical study of red sprites (streamers) in a gradient density atmosphere were recently published by Luque and Ebert (2010)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.