Oxygen diffusion in Sr 0.75 Y 0.25 CoO 2.625 is investigated using molecular dynamics simulations in conjunction with an established set of Born model potentials. We predict an activation energy of diffusion for 1.56 eV in the temperature range of 1000-1400 K. We observe extensive disordering of the oxygen ions over a subset of lattice sites. Furthermore, oxygen ion diffusion both in the a-b plane and along the c axis requires the same set of rate-limiting ion hops. It is predicted that oxygen transport in Sr 0.75 Y 0.25 CoO 2.625 is therefore isotropic.
The effect of salt concentration in diglyme-based electrolytes on cycling performance of promising KVOPO 4 and K 1.69 Mn[Fe(CN) 6 ] 0.85 •0.4H 2 O positive electrodes (cathodes) and a hard carbon negative electrode (anode) for next-generation potassium-ion (K-ion) batteries is investigated. A decrease in free solvent molecule number with increasing electrolyte concentration is found, which results in a better aluminum current collector stability, formation of thinner solid electrolyte interface (SEI) passivation layers, and further inhibition of solvent degradation redox processes occurring at the electrode surface upon cycling. The KVOPO 4 and K 1.69 Mn[Fe(CN) 6 ] 0.85 •0.4H 2 O cathodes exhibit an enhanced specific discharge capacity (54 and 105 mA•h•g −1 , respectively) in K-ion cells at the highest electrolyte concentrations (2 and 2.5 M KPF 6 in diglyme, respectively) at a 0.1 C rate. However, the behavior of the hard carbon anode is noticeably affected by the salt concentration over the first few cycles, a phenomenon tentatively attributed to the SEI layer formation and the presence of irreversible intercalation sites for K + ions in the hard carbon framework. Finally, electrochemical tests on K-ion full cells consisting of the K 1.69 Mn[Fe(CN) 6 ] 0.85 •0.4H 2 O cathode, a hard carbon anode, and an ether-based electrolyte show capacity retention of 86% over 300 cycles at a 0.6 C rate.
Hard carbon (HC) is considered as a negative electrode material for potassium-ion batteries, but it suffers from significant irreversible capacity loss at the first discharge cycle. Here, we investigated the possible reasons of this capacity loss with a combination of in situ AFM and various ex situ TEM techniques (high resolution TEM and high angle annular dark field scanning TEM imaging, and STEM-EELS and STEM-EDX spectroscopic mapping) targeting the electrode/electrolyte interphase formation process in the carbonate-based electrolyte with and without vinylene carbonate (VC) as an additive. The studied HC consists of curved graphitic layers arranged into short packets and round cages, the latter acting as traps for K+ ions causing low Coulombic efficiency between cycling. Our comparative study of solid electrolyte interphase (SEI) formation in the carbonate-based electrolyte with and without the VC additive revealed that in the pristine electrolyte, the SEI consists mostly of inorganic components, whereas adding VC introduces a polymeric organic component to the SEI, increasing its elasticity and stability against fracturing upon HC expansion/contraction during electrochemical cycling. Additionally, significant K+ loss occurs due to Na+ for K+ exchange in Na-carboxymethyl cellulose used as a binder. These findings reflect the cumulative impact of the internal HC structure, SEI properties, and binder nature into the electrochemical functional properties of the HC-based anodes for K-ion batteries.
Information about the surrounding atmosphere at a real timescale significantly relies on available gas sensors to be efficiently combined into multisensor arrays as electronic olfaction units. However, the array’s performance is challenged by the ability to provide orthogonal responses from the employed sensors at a reasonable cost. This issue becomes more demanded when the arrays are designed under an on-chip paradigm to meet a number of emerging calls either in the internet-of-things industry or in situ noninvasive diagnostics of human breath, to name a few, for small-sized low-powered detectors. The recent advances in additive manufacturing provide a solid top-down background to develop such chip-based gas-analytical systems under low-cost technology protocols. Here, we employ hydrolytically active heteroligand complexes of metals as ink components for microplotter patterning a multioxide combinatorial library of chemiresistive type at a single chip equipped with multiple electrodes. To primarily test the performance of such a multisensor array, various semiconducting oxides of the p- and n-conductance origins based on pristine and mixed nanocrystalline MnO x , TiO2, ZrO2, CeO2, ZnO, Cr2O3, Co3O4, and SnO2 thin films, of up to 70 nm thick, have been printed over hundred μm areas and their micronanostructure and fabrication conditions are thoroughly assessed. The developed multioxide library is shown to deliver at a range of operating temperatures, up to 400 °C, highly sensitive and highly selective vector signals to different, but chemically akin, alcohol vapors (methanol, ethanol, isopropanol, and n-butanol) as examples at low ppm concentrations when mixed with air. The suggested approach provides us a promising way to achieve cost-effective and well-performed electronic olfaction devices matured from the diverse chemiresistive responses of the printed nanocrystalline oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.