Recent studies show that synchronous reluctance motors (SynRMs) present promising technologies. As a result, research on trending SynRMs drive systems has expanded. This work disseminates the recent developments of design, modeling, and more specifically, control of these motors. Firstly, a brief study of the dominant motor technologies compared to SynRMs is carried out. Secondly, the most prominent motor control methods are studied and classified, which can come in handy for researchers and industries to opt for a proper control method for motor drive systems. Finally, the control strategies for different speed regions of SynRM are studied and the transitions between trajectories are analyzed.
Samples from FeSi4 powder were fabricated with a low power selective laser melting (SLM) system using a laser re-melting strategy. The sample material was characterized through magnetic measurements. The study showed excellent DC magnetic properties, comparable to commercial and other 3D printed soft ferromagnetic materials from the literature at low (1 T) magnetization. Empirical total core losses were segregated into hysteresis, eddy and excessive losses via the subtraction of finite element method (FEM) simulated eddy current losses and hysteresis losses measured at quasi-static conditions. Hysteresis losses were found to decrease from 3.65 to 0.95 W/kg (1 T, 50 Hz) after the annealing. Both empirical and FEM results confirm considerable eddy currents generated in the printed bulk toroidal sample, which increase dramatically at high material saturation after annealing. These losses could potentially be reduced by using partitioned material internal structure realized by printed airgaps. Similarly, with regard to the samples characterized in this study, the substantially increased core losses induced by material oversaturation due to reduced filling factor may present a challenge in realizing 3D printed electrical machines with comparable performance to established 2D laminated designs.
Nowadays a lot of attention is paid on the issues of global warming and climate change. Human impact on the environment is noticeable from the aspect of resource life cycles. Energy efficiency requirements have led to the research and development of alternative technologies for the rotating electrical machines. The life cycle assessment brings out important procedures which can help to reduce machines' impact on the environment, being therefore an instrument for the assessment of the influence of particular products on the environment from cradle to grave -beginning with working out the materials, followed by manufacturing, transporting, marketing, use, and recycling. Three types of electrical machines have been chosen for comparison: synchronous reluctance motor, permanent magnet assisted synchronous reluctance motor and induction motor. The article presents a life cycle assessment case study based on experimental results of motors designed by the research group.
In this paper, the bearing faults analysis of the brushless DC motor is presented. The research method is based on the analysis of the vibration signal of healthy as well as faulty bearings by the identification of specific frequencies on the vibration spectrum. For the experiment, the most common faults were inflicted on the bearings. As the used motor is intended for electric scooter applications, seven different damages were chosen, which are highly likely to occur during the scooter operation. The main bearing faults and the possibility of fault monitoring are addressed. The vibration data are gathered by the acceleration sensors placed on the motor at different locations and the spectrum analysis is performed using the fast Fourier transform. The variation in the amplitude of the frequency harmonics particularly the fundamental component is presented as a fault indicator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.