Hydrohydrazination of propargylamides with BocNHNH2 under Zn(OTf)2 catalysis gave dihydro-1,2,4-triazines which can be efficiently aromatized in situ with K3[Fe(CN)6]. This provides a new entry into the medicinally important 1,2,4-triazine core.
The aim of this research was to correlate indicators of proinflammatory status and the structural/functional characteristics of the cardiovascular system comparatively in male and female patients with essential hypertension (EH) complicated by diastolic chronic heart failure (CHF) with preserved left ventricular ejection fraction (LVEF). The study included 104 middle-aged patients (55 males (M) and 49 females (F)) with first- or second-degree EH complicated by CHF with preserved LVEF. They all belonged to the low functional class of CHF, with LVEF ≥50%, first- or second-degree of LV diastolic dysfunction (LVDD), LV hypertrophy (LVH), and dilatation of the left atrium (LA) with a sinus rhythm and N-terminal brain natriuretic peptide >125 pg/mL. Serum levels of C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) were measured. To identify the relationship between the proinflammatory pattern and cardiovascular parameters, Spearman’s rank correlation coefficients were determined. M had markedly higher levels of CRP, TNF-α, and IL-6 compared to F. However, all the mean values corresponded to the reference range. Significant direct associations of CRP level with the LV mass index (LVMI), relative wall thickness (RWT), LA volume index (LAVI), E/e’ ratio, and systolic and diastolic blood pressure (SBP, DBP) existed in both M and F, as well as negative correlations of CRP with LVDD parameter e’ and distance covered in a 6 min walk test. M and F had a positive association between IL-6 and LVMI, LAVI, E/e’ ratio, SBP, RWT, and DBP, as well as strong negative associations between IL-6 and e’ and distance passed in 6 min in each group. Significant direct correlations existed between serum TNF-α level and LVMI, RWT, LAVI, E/e’, SBP, and DBP both in M and F. Furthermore, there were negative relationships of TNF-α level with e’ and the distance covered for the 6 min walk. This study demonstrated a close relationship between the blood levels of proinflammatory autacoids and indicators of EH, exercise tolerance, LVH, LVDD, and LA enlargement, regardless of the patient’s sex. Compared to female patients, male patients had stronger correlations of CRP, TNF-α, and IL-6 levels with indicators of LVDD degree.
Low-intensity systemic inflammation is an important element of heart failure pathogenesis. The aim of this study is to assess proinflammatory status serum indicators (C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6)) in middle-aged males (M) and females (F) with essential hypertension (HTN) depending on left ventricular (LV) diastolic dysfunction (LVDD). The main group comprised 55 M and 49 F with the first- to second-severity grade HTN with mild heart failure and a preserved LV ejection fraction ≥50%. Patients had sinus rhythm, first or second-severity degree LVDD, LV hypertrophy, left atrium dilatation, and NT-proBNP > 125 pg/mL. Comparison group: 30 hypertensives without cardiac dysfunction; control group: 31 normotensives. Quantitative features were compared using the Mann–Whitney test, median χ2, ANOVA module. Spearman’s rank correlation coefficients were determined to identify the relationship between the proinflammatory pattern and exercise tolerance. Hypertensive M had markedly higher CRP, TNF-α, and IL-6 levels compared to F. All mean values corresponded to reference range. In patients with second-degree LVDD, CRP, TNF-α, and IL-6 levels were significantly greater than in subjects with first-degree LVDD (both within M and within F samples). Significant negative associations between CRP, IL-6, and TNF-α levels and the 6 min walk test existed in hypertensive M and F. The study demonstrated a close relationship between the proinflammatory pattern and LVDD and exercise tolerance indicators, regardless of the hypertensive patient’s sex.
The development of tissue engineering is based on the use of the extracellular matrix as a construct to which cells migrate and attach for proliferation, differentiation, and long-term functioning. The preparation of the matrix is one of the most important tasks, since it must be non-immunogenic, have optimal mechanical properties, contain cell adhesion molecules and growth factors and degrade at the predicted time. The search for biomaterial for the manufacture of the matrix is limited by a number of circumstances. Tissue-specific for the matrix intravital biomaterial is limited, cadaveric is not acceptable due to age-related changes or diseases that reduce the regenerative capacity of tissues; synthetic materials lack cell adhesion molecules or are not degraded. The umbilical cord is an accessible homologous biomaterial of non- embryonic origin, preserving the features of the embryonic phenotype. The optimal method of decellularization of the Warton jelly of the human umbilical cord in the manufacture of a full-component cell-free matrix is substantiated. Umbilical cord decellularization was carried out using a detergent method with a 0.05% sodium dodecyl sulfate solution for 24 hours. The quality of the decellularization was evaluated microscopically by staining with fluorescent dye and quantification of nucleic acids. The gentle method used to remove cells from the Warton jelly tissue meets the existing criteria for the effectiveness of decellularization, since only single cells and a small amount of deoxyribonucleic acid remain in the processed biomaterial. The technique does not provide centrifugation at high speeds, in which glycosaminoglycans and proteoglycans are lost from the matrix, the enzymatic action that destroys fibrillar collagen structures, and non-physiological conditions of decellularization. The therapeutic success of tissue-engineering structures based on the extracellular matrix will depend not only on the bioactivity of the umbilical cord, but also on the safety of the composition, structure and mechanical characteristics of the matrix. Due to the availability and non-invasiveness of receiving from healthy young donors, provisional organs are an excellent source of homologous biomaterial for matrix production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.