The paper contains the materials of the studies which prove that the construction sphere in the 21 st century requires the application of new efficient, low cost construction materials specially designed for the protection against hazardous ecological factors. Methods of designing the compositions of concretes and technology of the special-purpose construction materials production is considered. The importance of studying the problems, dealing with the necessity of the development of the heavy concretes, able to shield the penetrating radiation is stated. The available developments in the sphere of the construction materials science are considered, the peculiarities of the technological parameters of obtaining special-purpose concretes on the base of the mineral binders are allocated. It is noted that the application of various by physical-chemical characteristics concrete aggregates on the base of mineral binders, allows to obtain composite materials, having wide range of operation properties. Experimental studies proved the possibility to regulate the construction engineering and electric physical properties of fine grain concretes using small-size metal aggregates, obtained from the machining waste. The possibility to regulate the technological parameters of the metal-saturated concretes for the obtaining of the composite material with the radiation-protection properties is underlined. It was determined that during the addition of the smallsize metal aggregate to 35 % of the pts in the structure of the flow mixtures micro compaction of the structure takes place and the increase of the water demand of the forming solution is observed . As a result of using the technology of the mechanical compaction of the structure of the dispersed-filled products, sample-models of the radiation-proof coating with the average density of up to 2910 kg/m 3 are obtained. Application of the technology of the artificial synthesis of the matrix metal-saturated dense structure of the dispersed -filled conglomerate with the large area of the internal surfaces of the phases separation will provide the products made of special concrete the ability to weaken ionizing radiation fluxes in the body of the barrier screen. The possibility to regulate radiation-protection properties of the concretes by changing formulation -technological parameters of the composite material production is substantiated. It is shown that due to physical-chemical processes of the disperse-filled structures formation the volumetric electroconducting matrix is formed in the body of the fine-grain metal-saturated concrete, each component of the matrix differs by its electrical physical properties. According to the laws of quantum physics ionizing electromagnetic radiation possesses simultaneously wave and corpuscular properties, the absorption of the penetrating radioactive radiation in the structure of the material occurs due to the repeated reflections and diffusions of the radiation flux by the surface of the metal and the intensity of electromagnetic waves will ...
All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, distributed, or transmitted, in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. The content and reliability of the articles are the responsibility of the authors. When using and borrowing materials reference to the publication is required. Collection of scientific articles published is the scientific and practical publication, which contains scientific articles of students, graduate students, Candidates and Doctors of Sciences, research workers and practitioners from Europe and Ukraine. The articles contain the study, reflecting the processes and changes in the structure of modern science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.