The paper provided presents a new design of two-disk wide-row coulter that ensures uniform distribution of seeds to an even bed at the furrow bottom, as well as preserving of optimal distances between the seeds. Seeds fall from the seed tube of coil sowing apparatus onto a metal distribution plate with staggeringly arranged metal pins, which distribute the seeds to furrow bottom surface in a form of separate strips. To substantiate the kinematic and constructive parameters of proposed coulter design, a mathematical model for transport of seeds along the surface of a distribution plate was developed and the Cauchy problem for a system of the second-order quasi-linear differential equations was solved by the finite difference methods using embedded software procedures in mathematical software packages (Mathcad, Maple, etc.). The finite-difference method implementation was carried out using computer software allowing the determination of coordinates of seeds and, if necessary, changing of direction of their movement by adjusting the coulter operation to improve the distribution of seeds to soil in order to reduce the injury to them, which ultimately can contribute to an increased yield. Coverage of the plate surface and distribution pins with a rubber material can also contribute to a significant reduction in seed injury during sowing.
The urgency of the study is due to the need to increase the productivity of biogas plants by intensifying the process of methane fermentation of cattle manure in mesophilic mode by adding to it the waste from biodiesel production: crude glycerine. To substantiate the rational amount of crude glycerine in the substrate, the following tasks were performed: determination of dry matter, dry organic matter, and moisture of the substrate from cattle manure with the addition of crude glycerine; conducting experimental studies on biogas yield during fermentation of cattle manure with the addition of crude glycerine with periodic loading of the substrate; and development of a biogas yield model and determination of the rational composition of crude glycerine with its gradual loading into biogas plants with cattle manure. The article presents the results of research on fermentation of substrates in a laboratory biogas plant with a useful volume of 30 L, which fermented different proportions of crude glycerine with cattle manure at a temperature of 30 °C, 35 °C, and 40 °C. The scientific novelty of the work is to determine the patterns of intensification of the process of methane fermentation of cattle manure with the addition of different portions of crude glycerine. A rapid increase in biogas yield is observed when the glycerol content is up to 0.75%. With the addition of more glycerine, the growth of biogas yield slows down. The digester of the biogas plant, where experimental studies were conducted on the fermentation of substrates based on cattle manure with the addition of co-substrates, is suitable for periodic loading of the substrate. As a rule, existing biogas plants use a gradual mode of loading the digester. Conducting experimental studies on biogas yield during fermentation of cattle manure with the addition of crude glycerine with periodic loading of the substrate makes it possible to build a mathematical model of biogas yield and determine the rational composition (up to 0.75%) of crude glycerine with its gradual loading in biogas plants. Adding 0.75% of crude glycerine to the substrate at a fermentation temperature of 30 °C allows to increase the biogas yield by 2.5 times and proportionally increase the production of heat and electricity. The practical application of this knowledge allows the design of an appropriate capacity of the biogas storage tank (gasholder).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.