Conditions for the formation of (1-x)BaTiO3–xLi0.5Bi0.5TiO3 (0 ≤ x ≤0.6) solid solutions with positive temperature coefficient of resistance (PTCR) effect were studied. Solid solutions were prepared by solid state reaction technique. Samples were sintered under reducing atmosphere N2/H2 in the temperature range 1200–1450 °C with subsequent oxidation in air. The phase composition was investigated by X-ray powder diffraction method. It was found that samples of (1-x)BaTiO3–xLi0.5Bi0.5TiO3 (0 ≤ x ≤0.6) solid solutions at room temperature exhibit perovskite structure. Unit cell parameters of unstable at the room temperature compound Li0.5Bi0.5TiO3 were determined by extrapolation of concentration dependence of the unit cell parameters in the (1-x)BaTiO3–xLi0.5Bi0.5TiO3 system. It was shown that minimum value of resistivity ρmin rises with increase in x value. Complex impedance method shown that ceramic grains of (1-x)BaTiO3–xLi0.5Bi0.5TiO3 materials consist of three areas with different electrical properties. Boundary and outerlayer region of grains make the main contribution to the PTCR effect in lithium-containing solid solutions. It was shown that magnitude of the potential barrier's decreases with increasing x.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.