This work is motivated by many observations of nitrogen hydrides including their isotopologues in the interstellar space. We studied the formation of NH+ and ND+ ions in the nearly thermoneutral hydrogen abstraction reactions of N+ ions with H2, HD, and D2 at temperatures from 300 K down to 15 K using a variable-temperature 22-pole radio frequency ion trap. For the reaction of N+ with HD, the branching ratios for production of ND+ and NH+ ions were also determined. The activation energies of all four reaction channels were determined from the temperature dependencies of the measured reaction rate coefficients. Under the assumption of no energy barriers on the reaction paths, we derive the vibrationless energy change (i.e., the difference of equilibrium Born–Oppenheimer potential energies of products and reactants) in the reactions as ΔE
e = (103 ± 3) meV.
A cryogenic stationary afterglow apparatus equipped with a near-infrared cavity-ring-down-spectrometer (Cryo-SA-CRDS) for studies of electron-ion recombination processes in the plasma at temperatures 30-300 K has been designed, constructed, tested, and put into operation. The plasma is generated in a sapphire discharge tube that is contained in a microwave cavity. The cavity and the tube are attached to the second stage of the cold head of the cryocooler system, and they are inserted to an UHV chamber with mirrors for CRDS and vacuum windows on both ends of the tube. The temperature of the discharge tube can be made as low as 25 K. In initial test measurements, the discharge was ignited in He/Ar/H or He/H gas mixtures and the density of H ions and their kinetic and rotational temperatures were measured during the discharge and afterglow. From the measured decrease in the ion density, during the afterglow, effective recombination rate coefficients were determined. Plasma relaxation was studied in He/Ar gas mixtures by monitoring the presence of highly excited argon atoms. The spectroscopic measurements demonstrated that the kinetic temperature of the ions is equal to the gas temperature and that it can be varied from 300 K down to 30 K.
Recombination of N2H+ ions with electrons was studied using a stationary afterglow with a cavity ring-down spectrometer. We probed in situ the time evolutions of number densities of different rotational and vibrational states of recombining N2H+ ions and determined the thermal recombination rate coefficients for N2H+ in the temperature range of 80–350 K. The newly calculated vibrational transition moments of N2H+ are used to explain the different values of recombination rate coefficients obtained in some of the previous studies. No statistically significant dependence of the measured recombination rate coefficient on the buffer gas number density was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.