Groundwater dependent ecosystems (GDEs) include valuable ecosystems such as springs, wetlands, rivers, lakes and lagoons. The protection of these systems and services they provide is highlighted by international agreements, i.e. Ramsar convention on wetlands, and regional legislation, i.e. the European Water Framework Directive. Groundwater provides water, nutrients and a relatively stable temperature. However, the role of groundwater in surface ecosystems is not fully understood. The ecosystem can depend on groundwater directly or indirectly, and the reliance can be continuous, seasonal or occasional. This has implications for the vulnerability of ecosystems, as some may be easily affected by external pressure. Conceptual models and quantitative assessments of how groundwater interacts with the environment are needed. GDEs are also threatened by different land use activities and climate change. Hence, we need to understand how GDEs are affected by changes in
Abstract. Understanding the effects of major hydrogeological controls on hyporheic exchange and bank storage is essential for river water management, groundwater abstraction, restoration and ecosystem sustainability. Analytical models cannot adequately represent complex settings with, for example, transient boundary conditions, varying geometry of surface water-groundwater interface, unsaturated and overland flow, etc. To understand the influence of parameters such as (1) sloping river banks, (2) varying hydraulic conductivity of the riverbed and (3) different river discharge wave scenarios on hyporheic exchange characteristics such as (a) bank storage, (b) return flows and (c) residence time, a 2-D hydrogeological conceptual model and, subsequently, an adequate numerical model were developed. The numerical model was calibrated against observations in the aquifer adjacent to the hydropower-regulated Lule River, northern Sweden, which has predominantly diurnal discharge fluctuations during summer and long-lasting discharge peaks during autumn and winter. Modelling results revealed that bank storage increased with river wave amplitude, wave duration and smaller slope of the river bank, while maximum exchange flux decreased with wave duration. When a homogeneous clogging layer covered the entire river-aquifer interface, hydraulic conductivity positively affected bank storage. The presence of a clogging layer with hydraulic conductivity < 0.001 m d −1 significantly reduced the exchange flows and virtually eliminated bank storage. The bank storage return/fill time ratio was positively related to wave amplitude and the hydraulic conductivity of the interface and negatively to wave duration and bank slope. Discharge oscillations with short duration and small amplitude decreased bank storage and, therefore, the hyporheic exchange, which has implications for solute fluxes, redox conditions and the potential of riverbeds as fish-spawning locations. Based on these results, river regulation strategies can be improved by considering the effect of certain wave event configurations on hyporheic exchange to ensure harmonious hydrogeochemical functioning of the river-aquifer interfaces and related ecosystems.
Groundwater-surface water (GW-SW) interactions cover a broad range of hydrogeological and biological processes and are controlled by natural and anthropogenic factors at various spatio-temporal scales, from watershed to hyporheic/hypolentic zone. Understanding these processes is vital in the protection of groundwater-dependent ecosystems increasingly required in water resources legislation across the world. The use of environmental tracers and indicators that are relevant simultaneously for groundwater, surface water and biocenoses-biotope interactions constitutes a powerful tool to succeed in the management task. However, tracer type must be chosen according to the scale of interest and tracer use thus requires a good conceptual understanding of the processes to be evaluated. This paper reviews various GW-SW interaction processes and their drivers and, based on available knowledge, systemises application of conservative tracers and semi-conservative and reactive environmental indicators at different spatial scales. Biocenoses-biotopes relationships are viewed as a possible transition tool between scales. Relation between principal application of the environmental tracers and indicators, examples and guidelines are further proposed for examining GW-SW interactions from a hydrogeological and biological point of view by demonstrating the usability of the tracers/indicators and providing recommendations for the scientific community and decision makers.
Widespread river regulation is known to modify river-aquifer interactions, influencing entire watersheds, but knowledge of the hyporheic flowpath along regulated rivers is limited. This study measured the hydraulic conductivity of the river bed and the aquifer, water levels and seepage fluxes in the heavily regulated Lule River in Northern Sweden, with the aim of characterising water exchange across the river-aquifer interface. While pristine rivers in the area are gaining, the Lule River was recharging the aquifer during 10% of the time. Daily river level fluctuations (typically ±0.25 m) directed ~3% of the total orthogonal flux across the river bed towards the aquifer, while during ~2% of the time the orthogonal fluxes were negligible (≤10–4 m d–1). A clogging layer on the river bed, most likely formed due to the modified river discharge, restricted river-aquifer exchange. The hyporheic zone had higher electrical conductivity than the river and the aquifer and electrical conductivity occasionally decreased following rising river water levels, with 3–5 hours' delay. Overall, hydropower regulation has severely altered the hydrological regime of the hyporheic zone in the Lule River.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.