Abstract-This paper studies the application of modern deep convolutional and recurrent neural networks to video classification, specifically human action recognition. Multistream architecture, which uses the ideas of representation learning to extract embeddings of multimodal features, is proposed. It is based on 2D convolutional and recurrent neural networks, and the fusion model receives a video embedding as input. Thus, the classification is performed based on this compact representation of spatial, temporal and audio information. The proposed architecture achieves 93.1% accuracy on UCF101, which is better than the results obtained with the models that have a similar architecture, and also produces representations which can be used by other models as features; anomaly detection using autoencoders is proposed as an example of this.
This paper contains a review and analysis of applications of modern ma-chine learning approaches to solve sleep apnea severity level detection by localization of apnea episodes and prediction of the subsequent apnea episodes. We demonstrate that signals provided by cheap wearable devices can be used to solve typical tasks of sleep apnea detection. We review major publicly available datasets that can be used for training respective deep learning models, and we analyze the usage options of these datasets. In particular, we prove that deep learning could improve the accuracy of sleep apnea classification, sleep apnea localization, and sleep apnea prediction, especially using more complex models with multimodal data from several sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.