The aim of this research was to optimize the mechanically activated synthesis (MAS) technology of the Cr3C2-Ni powder intended for thermal spraying. The MAS production route included ball milling for 72 h (ball-to-powder ratio 20:1) and sintering under 1075 °C in vacuum for 4 h. Sintered compact was crushed, classified by sieving to obtain the fraction suitable for thermal spraying (20–45 μm). The morphology and the phase composition of the powder were analyzed by a scanning electron microscope (SEM) and X-ray diffraction (XRD). The optimal Cr:C ratio found was 7:1. The powder had an equiaxial or a slightly elongated lamellar shape, Cr3C2 carbides in a single powder particle had an elongated shape. The principal phases in the optimized powder were Cr3C2, Cr7C3 and Ni (Cr) solid solution. Coatings from the manufactured powder were produced by the high velocity oxy-fuel (HVOF) spraying. The abrasive wear tests were carried out according to standard ASTM G65. The wear tests showed that the sprayed coatings from the experimental powder exhibited about five times higher wear rate at abrasive wear conditions than the coatings from the reference commercial powder.
The aims of this study were: (1) to produce composite coatings by high velocity oxy fuel (HVOF) spraying with steel matrix reinforced by cermets (a) Cr3C2–20%Ni and (b) TiC–20%NiMo, manufactured by mechanically activated synthesis (MAS); (2) to synthesize in situ a carbide reinforcement for iron matrix from a mixture of titanium and carbon during HVOF reactive thermal spraying (RTS); (3) to compare the wear resistance of produced coatings. As a reference, HVOF sprayed coatings from commercial Cr3C2–25%NiCr (Amperit 588.074) and AISI 316L were utilized. Study of microstructure revealed the inhomogeneity of the Cr-based MAS coating; the Ti-based MAS coating had typical carbide granular structure, and the Ti-based RTS coating possessed elongated structures of TiC. The X-ray diffraction revealed two main phases in the Cr-based MAS coating: Cr3C2 and austenite, and two phases in the Ti-based coatings: TiC and austenite. Among the studied coatings, the Cr-based MAS coating demonstrated the highest low-force hardness (490 HV0.3). During the abrasive rubber wheel test (ASTM G65), the Ti-based MAS coating showed the best wear resistance, followed by Cr3C2–25%NiCr and Ti-based RTS coating. In the abrasive–erosive test (GOST 23.201-78), the Ti-based MAS coating was 44% better than Cr3C2–25%NiCr coating. The Ti-based RTS coating was 11% more wear resistant than the reference Cr3C2–25%NiCr coating.
This study aimed to compare the X3CrNiMo17-13-3 stainless steel based plasma transferred arc (PTA) cladded hardfacings, reinforced with the in-situ synthesized Cr and Ti carbides. Carbon black and either pure Cr, pure Ti, or TiO2 were utilized as reinforcement precursors (the respective hardfacings are further referred to as Cr+C, Ti+C and TiO2+C). The pre-placed mixtures of matrix and reinforcement precursor powders were remelted by the plasma transferred arc, applying the preliminarily optimized process parameters (95 A, 22 – 24 V, 0.2 mm/s). As a reference, the unreinforced stainless steel hardfacing was used. The carbide reinforcement was successfully in-situ synthesized in all the hardfacings. The Cr + C hardfacing exhibited the largest average hardness (556 ± 29 HV1), while the TiO2 + C hardfacing had the largest average Young’s modulus (156.3 ± 19.7 GPa). The Cr + C and Ti + C hardfacings demonstrated the 2.3 and 2.1 times higher resistance to abrasive wear than the reference hardfacing. The TiO2 + C hardfacing showed 1.5 times lower wear resistance than the reference hardfacing presumably due to a lack of the reinforcement and a lower strain hardening ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.