In this study, we successfully prepare SnO(2) nanoparticles inside the pore channels of CMK-3 ordered mesoporous carbon via sonochemical method. The content of SnO(2) is 17 wt % calculated according to the energy-dispersive X-ray spectroscopy (EDS) result. CMK-3 with 17 wt % loading of SnO(2) nanoparticles has a large specific surface area and pore volume. Electrochemical performance demonstrates that the ordered SnO(2)/CMK-3 nanocomposites electrode possesses higher reversible capacity and cycling stability than that of original CMK-3 electrode. Moreover, the ordered SnO(2)/CMK-3 nanocomposites electrode also exhibits high capacity at higher charge/discharge rate. The improved electrochemical performance is attributed to the nanometer-sized SnO(2) formed inside CMK-3 and the large surface area of the mesopores (3.4 nm) in which the SnO(2) nanoparticles are formed.
The long afterglow strontium aluminate phosphor SrAl2O4: Eu2+, Dy3+ was prepared by a solid-state reaction method. The luminous fiber was prepared by melt spinning mixturing this complex and polyethylene terephthalate. The morphology and optical properties of the products had been characterized. Scanning electron microscope photographs indicated that rare earth aluminate salts were distributed on the fiber surface. X-ray diffraction diffusion data revealed that the crystal lattice of the polymer had not been significantly affected by the presence of the phosphor. The excitation spectrum showed broad bands in the ultraviolet and visible regions, and emission spectrum of the luminous fiber was shown to be red-shifted with a peak at 550 nm compared with that of the phosphor at 520 nm. The afterglow intensity of the luminous fiber decayed over an extended period, following an initial sharp reduction. The chromaticity diagram revealed a significant difference in the intensity of the luminous fiber and the phosphor, but only a minor color difference between them. The breaking strength and elongation of the luminous fiber were slightly below those of a normal polyester fiber.
Titanium dioxide (TiO2) nanofibers in the anatase structure were successfully prepared via electrospinning technique followed by calcination process. The morphologies, crystal structure, surface area, and the photocatalytic activity of resulting TiO2 nanofibers were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen sorption, and UV-vis spectroscopy. The results revealed that calcination temperature had greatly influenced the morphologies of TiO2 nanofibers, but no obvious effect was noticed on the crystal structure of TiO2 nanofibers. The photocatalytic properties of TiO2 nanofibers were evaluated by photocatalytic degradation of rhodamine B (RhB) in water under visible light irradiation. It was observed that TiO2 nanofibers obtained by calcination at 500°C for 3 hours exhibited the most excellent photocatalytic activity. We present a novel and simple method to fabricate TiO2 nanofibers with high-photocatalytic activity.
We report in this paper on the ultraviolet-assisted vapor-phase oxidation of methanol at room temperature, with the help of nano-size clusters of titanium dioxide dispersed in an MCM-41 silicate matrix. The surface species formed during the adsorption/oxidation of methanol and the transformation that they undergo as a result of ultraviolet irradiation were monitored using in-situ Fourier transform infrared and thermal desorption spectroscopy techniques. Parallel experiments conducted on TiO2/MCM, bulk titania, and pristine MCM-41 samples helped in identifying the individual role of titanium dioxide and host matrix in these processes. The photo-catalytic oxidation of methanol, at concentrations of 0.1 to 1.1 mol% in air, gave rise to formation of CO2 and H2O as products, for both the TiO2/MCM and bulk TiO2 samples. No such reaction occurred on titania-free MCM. Furthermore, the rate of reaction depended upon the TiO2 content of a sample and also on the concentration of methanol in reaction mixture. Thus, the rate of conversion increased progressively with the increase in TiO2 loading from 5 to 21 wt% in TiO2/MCM samples, particularly for the experiments with high concentration of methanol. For low methanol concentration (0.1 mol%) in air, the effect of titania content in MCM was very small. The specific activity (per g of titania) of a sample, on the other hand, showed an inverse relationship with the loading of titanium dioxide in a sample. Infrared and temperature-programmed desorption results revealed that the mode of CH3OH adsorption and the reactivity of the transient species formed during the oxidation process were independent of the size of dispersed titania particles. Thus, the particles of approximately 2-6 nm size, present in TiO2/MCM, exhibited a chemisorption behavior similar to that of the bulk titania. The results of the present study provide strong evidence that the hydroxyl groups, both on the host matrix and at the titania sites, participate independently in the formation of methoxyl groups and at the same time promote the heterogeneous photo-catalytic oxidation of methanol molecules via formation of transient formate groups. Our results also show that the effect of titania crystallite size in the photo-catalytic properties relate mainly to the larger surface area and hence to the enhanced number of chemisorption sites, rather than to the changes in electronic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.