For the purpose of identifying various lung illnesses, computed tomography (CT) pictures of the lung must be segmented. The most significant aspect of medical imaging is image segmentation. Via an automated process, the ROI (region of interest) is extracted. The process of segmentation separates an image into sections according to a particular interest, such as segmenting human organs or tissue. Several medical disorders can benefit from the segmented image of the lung. We specifically compared and analysed various threshold segmentation algorithms in this paper in an effort to determine which one would be the best to use moving forward with image processing. We have used Computed Tomography (CT) images of Lungs with Tuberculosis (TB) dataset from Kaggle for image processing and compared them with finely masked CT images to infer the best Threshold algorithm. We have decided to do the analysis on Threshold algorithms named as Binary Threshold, Otsu’s Threshold, and Adaptive Threshold. Comparison has been done based on performance parameters such as Accuracy, Precision, Recall Value, f1-score, etc. The results are also represented in Graphical format for better understanding of performed comparison study.
One of the major technical challenges in the automotive industry is the development of safety features to prevent drunk and drowsy driving. Driving while drunk or drowsy, especially in modern age, is a major reason behind road accidents. Driving when drowsy can result in a higher risk of crash than in alert condition. Therefore, by using assistive systems to monitor driver's level of alertness can be of significant help in prevention of accidents. This paper aims towards the detection of driver's drowsiness using the visual features approach along with drunk detection using alcohol sensor. Driver drowsiness is based on real-time detection of the driver's head, face and mouth. The system will also have an alcohol detection sensor which will determine whether the driver is drunk or not, thus covering the major reasons behind road accidents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.