This paper presents a solution in path planning for a robotic arm based on the artificial neural network (ANN) architecture, particularly a Static (Feedforward) Neural Network (SNN). The inputs of the network are the sample sets that are obtained from some specific requirements of the desired trajectory. After training, the outputs of the network are the smooth curves that will be used as the reference trajectory for the joints of the excavator arm. The capabilities of the designed neural network in solving the path planning problems are clearly demonstrated through a simulation conducted with a complex trajectory for the excavator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.