Although Software-defined networking (SDN) is a promising architecture that simplifies network management and control, it also faces security problems that may affect the whole network. Hence, protecting strategies, such as intrusion detection and prevention system (IDPS), are in need in the SDN context. The potential of machine learning-based solutions can become the motivation of cut-edge deep learning-based intrusion detection system that can leverage the centralized control and view of the controller to secure the underlying infrastructure. However, performing additional IDPS functions in the controller, which needs to process enormous traffic amounts, can overload this component, and slow down the network. This paper introduces an approach of Big Data analysis for intrusion detection system in SDN, named BIDSDN to enhance the classification perfor-mance with a massive amount of network traffic data. Specifically, we leverage Apache Spark to deploy the distributed deep learning – based detector to reduce the processing time on complex algorithms. The experiments conducted on CICIDS2018 dataset with distributed cluster prove the efficacy in tackling the Big Data-related issues in the large-scale network like SDN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.