Ammonia (NH) is an irritant gas with a unique pungent odor; sub-parts per million-level breath ammonia is a medical biomarker for kidney disorders and Helicobacter pylori bacteria-induced stomach infections. The humidity varies in both ambient environment and exhaled breath, and thus humidity dependence of gas-sensing characteristics is a great obstacle for real-time applications. Herein, flexible, humidity-independent, and room-temperature ammonia sensors are fabricated by the thermal evaporation of CuBr on a polyimide substrate and subsequent coating of a nanoscale moisture-blocking CeO overlayer by electron-beam evaporation. CuBr sensors coated with a 100 nm-thick CeO overlayer exhibits an ultrahigh response (resistance ratio) of 68 toward 5 ppm ammonia with excellent gas selectivity, rapid response, reversibility, and humidity-independent sensing characteristics at room temperature. In addition, the sensing performance remains stable after repetitive bending and long-term operation. Moreover, the sensors exhibit significant response to the simulated exhaled breath of patients with H. pylori infection; the simulated breath contains 50 ppb NH. The sensors thus show promising potential in detecting sub-parts per million-level NH, regardless of humidity fluctuations, which can open up new applications in wearable devices for in situ medical diagnosis and indoor/outdoor environment monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.