The synthesis process or composition of mesoporous silica nanoparticles (MSNs) affects the physicochemical properties. Using these properties, MSNs were synthesized through the Box–Behnken design (BBD) among statistical experimental methods. The effect of the amounts of synthetic reagents, hexadecyl triethyl ammonium bromide (CTAB), tetraethyl orthosilicate (TEOS), and 2 N sodium hydroxide (NaOH), was studied using the reaction surface design. Surface area, particle size, and zeta potential were set as response values. The physicochemical properties of the optimized MSNs were evaluated, and the effect as a drug delivery system was evaluated by loading doxorubicin hydrochloride (DOX). Nano-sized MSNs were successfully prepared with 0.617 g of CTAB, 8.417 mL of TEOS, and 2.726 mL of 2 N NaOH and showed excellent physicochemical properties. The optimized MSNs showed negligible toxicity in MCF-7 cells. The drug release profile from DOX-loaded MSNs (MSN@DOX) showed an increased rate of release with decreasing pH of the medium, with the release profile sustained for 48 h. In the cytotoxicity test, the sustained drug release mechanism of MSN@DOX was confirmed. This study proposed a new statistical approach to the synthesis of MSNs.
New molecules having the structure of (E)-2-(4-tert-butylbenzylidene) hydrazinecarbothioamide (QNT3-18) or 4-tert-butylphenylthiourea (QNT3-20) was synthesized and presupposed to inhibit melanogenesis through the inhibition of tyrosinase, which is involved in melanin formation. Therefore, we seek to develop these new molecules as skin whitening agents in topical formulations based on preformulation studies. QNT3-18 or QNT3-20 showed a strong single endothermic peak at 159.34°C with 10.79 μm-sized or at 150.69°C with 9.0 μm-sized aggregated particles, respectively. Both QNT3-18 and QNT3-20 did not show cytotoxicity at effective concentration range (0.4 µM) against keratinocyte cells and QNT3-18 was more retained than QNT3-20 in the skin instead of permeating through the skin. QNT3-18 or QNT3-20 was practically insoluble in water; the aqueous solubility was 3.8 ± 0.37 or 130.6 ± 2.52 μg/mL, respectively. Also, the partition coefficient value (log P) corresponding to the quotient between aqueous and octanol concentration of the molecule was 3.9 or 2.6, respectively. The skin retention amount of QNT3-18 was 1.7-fold higher than that of QNT3-20. When the optimal SLN cream (J3 formulation) containing 4 μM QNT3-18 was applied on the backs of hairless rats for 4 days after UV irradiation for 7 days and the skin color was checked by reflectance spectrophotometer, the rat skin treated with SLN cream with QNT3-18 quickly recovered to normal compared to skin treated with SLN cream without QNT3-18. Taken together, this study suggests that topical formulations such as creams including SLNs with QNT3-18 might be appropriate carriers for skin whitening agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.