Curcumin is a natural polyphenol and essential curcuminoid derived from the rhizome of the medicinal plant Curcuma longa (L.) is universally acknowledged as “Wonder drug of life”. It is a vital consumable and restorative herb, commonly keened for several ailments such as cancer, arthritis, pain, bruises, gastrointestinal quandaries, swelling and much more. Despite its enormous curative potential, the poor aqueous solubility and consequently, minimal systemic bioavailability with rapid degradation are some of the major factors which restrict the utilization of curcumin at medical perspective. However, to improve its clinically relevant parameters, nanoformulation of curcumin is emerging as a novel substitute for their superior therapeutic modality. It enhances its aqueous solubility and targeted delivery to the tissue of interest that prompts to enhance the bioavailability, better drug conveyance, and more expeditious treatment. Subsequent investigations are endeavored to enhance the bio-distribution of native curcumin by modifying with felicitous nano-carriers for encapsulation. In this review, we specifically focus on the recent nanotechnology based implementations applied for overcoming the innate constraints of native curcumin and additionally the associated challenges which restrict its potential therapeutic applications both in vivo and in-vitro studies, as well as their detailed mechanism of action, have additionally been discussed.
This study was conducted to determine the effects of argon plasma on the growth of soybean [Glycine max (L.) Merr.] sprouts and investigate the regulation mechanism of energy metabolism. The germination and growth characteristics were modified by argon plasma at different potentials and exposure durations. Upon investigation, plasma treatment at 22.1 kV for 12 s maximized the germination and seedling growth of soybean, increasing the concentrations of soluble protein, antioxidant enzymes, and adenosine triphosphate (ATP) as well as up-regulating ATP a1, ATP a2, ATP b1, ATP b2, ATP b3, target of rapamycin (TOR), growth-regulating factor (GRF) 1–6, down-regulating ATP MI25 mRNA expression, and increasing the demethylation levels of the sequenced region of ATP a1, ATP b1, TOR, GRF 5, and GRF 6 of 6-day-old soybean sprouts. These observations indicate that argon plasma promotes soybean seed germination and sprout growth by regulating the demethylation levels of ATP, TOR, and GRF.
In this study, we examined the effects of non-thermal dielectric barrier discharge plasma on embryonic development in chicken eggs in order to determine the optimal level of plasma exposure for the promotion of embryonic growth. We exposed developing chicken embryos at either Hamburger-Hamilton (HH) stage 04 or HH 20 to plasma at voltages of 11.7 kV to 27.6 kV. Our results show exposure at 11.7 kV for 1 min promoted chicken embryonic development, but exposure to more duration and intensity of plasma resulted in dose-dependent embryonic death and HH 20 stage embryos survive longer than those at stage HH 04. Furthermore, plasma exposure for 4 min increased the production of reactive oxygen species (ROS) and inactivated the nuclear factor erythroid 2-related factor 2 (NRF2)-antioxidant response signaling pathway, resulting in suppression of antioxidant enzymes in the skeletal muscle tissue of the dead embryos. We also found decreased levels of adenosine triphosphate production and reductions in the expression levels of several growth-related genes and proteins. These findings indicate that inappropriate plasma exposure causes dose-dependent embryonic death via excessive accumulation of ROS, NRF2-antioxidant signaling pathway disruption, and decreased growth factor expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.