Peroxiredoxins (Prxs) are a family of antioxidant proteins that reduce peroxide levels by using reducing agents such as thioredoxin. These proteins were characterized to have a number of cellular functions, including cell proliferation and differentiation and protection of specific proteins from oxidative damage. However, the physiological roles of the peroxiredoxins have not been determined. To clarify the physiological relevance of this protein type, we generated a mouse model deficient in Prx II, which is abundantly expressed in all types of cells. The Prx II ؊/؊ mice were healthy in appearance and fertile. However, they had splenomegaly caused by the congestion of red pulp with hemosiderin accumulation. Heinz bodies were detected in their peripheral blood, and morphologically abnormal cells were elevated in the dense red blood cell (RBC) fractions, which contained markedly higher levels of reactive oxygen species (ROS). The Prx II ؊/؊ mice had significantly decreased hematocrit levels, but increased reticulocyte counts and erythropoietin levels, indicative of a compensatory action to maintain hematologic homeostasis in the mice. In addition, a labeling experiment with the thiol-modifying reagent biotinylated iodoacetamide (BIAM) in Prx II ؊/؊ mice revealed that a variety of RBC proteins were highly oxidized.
TAGLN2 stabilizes cortical F-actin and thereby maintains F-actin contents at the immunological synapse, which allows T cell activation following T cell receptor stimulation.
Several methods have been developed for the immortalization of B lymphocytes by Epstein-Barr virus (EBV). We developed an efficient method which reduces the time from culture initiation to immortalization and cryopreservation. Two infections of EBV to lymphocytes, and the use of phorbol ester-induced EBV stock significantly improved immortalization efficiency and reduced the time between initiation and immortalization and cryopreservation. The resulting cell bank was used to produce DNA for genetic studies focusing on the genes involved in immune and autistic disorders.
BackgroundShikonin, a natural naphthoquinone pigment purified from Lithospermum erythrorhizon, induces necroptosis in various cancer types, but the mechanisms underlying the anticancer activity of shikonin in lung cancer are not fully understood. This study was designed to clarify whether shikonin causes necroptosis in non-small cell lung cancer (NSCLC) cells and to investigate the mechanism of action.MethodsMultiplex and caspase 8 assays were used to analyze effect of shikonin on A549 cells. Cytometry with annexin V/PI staining and MTT assays were used to analyze the mode of cell death. Western blotting was used to determine the effect of shikonin-induced necroptosis and autophagy. Xenograft and orthotopic models with A549 cells were used to evaluate the anti-tumor effect of shikonin in vivo.ResultsMost of the cell death induced by shikonin could be rescued by the specific necroptosis inhibitor necrostatin-1, but not by the general caspase inhibitor Z-VAD-FMK. Tumor growth was significantly lower in animals treated with shikonin than in the control group. Shikonin also increased RIP1 protein expression in tumor tissues. Autophagy inhibitors, including methyladenine (3-MA), ATG5 siRNA, and bafilomycin A, enhanced shikonin-induced necroptosis, whereas RIP1 siRNA had no effect on the apoptotic potential of shikonin.ConclusionsOur data indicated that shikonin treatment induced necroptosis and autophagy in NSCLC cells. In addition, the inhibition of shikonin-induced autophagy enhanced necroptosis, suggesting that shikonin could be a novel therapeutic strategy against NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.