African swine fever (ASF) is the cause of a recent pandemic that is posing a threat to much of the world swine production. The etiological agent, ASF virus (ASFV), infects domestic and wild swine, producing a variety of clinical presentations depending on the virus strain and the genetic background of the pigs infected. No commercial vaccine is currently available, although recombinant live attenuated vaccine candidates have been shown to be efficacious. In addition to determining efficacy, it is paramount to evaluate the safety profile of a live attenuated vaccine. The presence of residual virulence and the possibility of reversion to virulence are two of the concerns that must be evaluated in the development of live attenuated vaccines. Here we evaluate the safety profile of an efficacious live attenuated vaccine candidate, ASFV-G-ΔI177L. Results from safety studies showed that ASFV-G-ΔI177L remains genetically stable and phenotypically attenuated during a five-passage reversion to virulence study in domestic swine. In addition, large-scale experiments to detect virus shedding and transmission confirmed that even under varying conditions, ASFV-G-ΔI177L is a safe live attenuated vaccine.
In this paper we consider the influence of higher-order nonlinear effects like third-order dispersion, self-steepening effect on the propagation characteristics of solitons. By solving the higher-order nonlinear Schrödinger equation we show that the self-steepening effect can lead to the breakup of higher-order solitons through the phenomenon of soliton fission. This effect plays an essential role in several nonlinear phenomena, in particular in the so-called supercontinuum generation in optical fibers. Moreover, we can use third order dispersion to compress pulses as well as changing the frequency.
The refractive index of the methanol-water mixture depending on the wavelength at different concentrations was determined by our experimental method using a Michelson interferometer system. A comparative study of Gladstone-Dale, Arago–Biot and Newton relations for predicting the refractive index of a liquid has been carried out to test their validity for the methanol-water mixture with the different concentrations 30%, 40%, 50%, 60%, 80%, and 100%. The comparison shows the good agreement between our experimental results and the results in the expressions studied over the wavelength range approximately from 450 to 850 nm. Full Text: PDF ReferencesS. Sharma, P.B. Patel, R.S. Patel, "Density and Comparative Refractive Index Study on Mixing Properties of Binary Liquid Mixtures of Eucalyptol with Hydrocarbons at 303.15, 308.15 and 313.15 K", E-Journal of Chemistry 4(3), 343 (2007). CrossRef A. Gayathri, T. Venugopal, R. Padmanaban, K. Venkatramanan, R. Vijayalakshmi, "A comparative study of experimental and theoretical refractive index of binary liquid mixtures using mathematical methods", IOP Conf. Series: Materials Science and Engineering 390, 012116 (2018). CrossRef A. Jahan, M.A. Alam, M.A.R. Khan, S. Akhtar, "Refractive Indices for the Binary Mixtures of N, N-Dimethylformamide with 2-Butanol and 2-Pentanol at Temperatures 303.15 K, 313.15 K, and 323.15 K", American Journal of Physical Chemistry 7(4), 55 (2018). CrossRef N. An, B. Zhuang, M. Li, Y. Lu, Z. Wang, "Combined Theoretical and Experimental Study of Refractive Indices of Water–Acetonitrile–Salt Systems", J. Phys. Chem. B 119(33), 10701 (2015). CrossRef M. Upadhyay, S.U. Lego, "Refractive Index of Acetone-Water mixture at different concentrations", American International Journal of Research in Science, Technology, Engineering & Mathematics 20(1), 77 (2017). CrossRef T.H. Barnes, K.Matsumoto, T. Eiju, K. Matsuda, N. Ooyama, "Grating interferometer with extremely high stability, suitable for measuring small refractive index changes", Appl. Opt. 30, 745 (1991). CrossRef B. W. Grange, W. H. Stevenson, R. Viskanta, "Refractive index of liquid solutions at low temperatures: an accurate measurement", Applied Optics 15(4), 858 (1976). CrossRef P. Hlubina, "White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica", Optics Communications 193(1-6), 1 (2001). CrossRef P. Hlubina, W. Urbanczyk, "Dispersion of the group birefringence of a calcite crystal measured by white-light spectral interferometry", Meas. Sci. Technol. 16(6), 1267 (2005). CrossRef P. Hlubina, D. Ciprian, L. Knyblová, "Direct measurement of dispersion of the group refractive indices of quartz crystal by white-light spectral interferometry", Optics Communications 269(1), 8 (2007). CrossRef S. R. Kachiraju, D. A. Gregory, "Determining the refractive index of liquids using a modified Michelson interferometer", Optics & Laser Technology 44(8), 2361 (2012). CrossRef F. Gladstone, D. Dale, "XXXVI. On the influence of temperature on the refraction of light", Philos. Trans. R. Soc. 148, 887 (1858). CrossRef D.F.J. Arago, J.B. Biot, Mem. Acad. Fr. 15, 7 (1806). CrossRef Kurtz S S and Ward A L J, "The refractivity intercept and the specific refraction equation of Newton. I. development of the refractivity intercept and comparison with specific refraction equations", Franklin Inst. 222, 563-592 (1936). CrossRef K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, D. Triantis, "Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared", Appl. Phys. B 116, 617 (2013). CrossRef S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen, "Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region", Opt. Mater. Express 2(11), 1588 (2012). CrossRef
Abstract-In this work, we use the generalized nonlinearSchrödinger equation to study the propagation of ultrashort optical pulses in the presence of self-phase modulation, nonlinear absorption and third-order dispersion. The combined effect of the third-order dispersion and nonlinear absorption on amplitude, center location and phase of the soliton has been investigated by an approximate analytical method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.