In this study, the use of potassium dichromate as an oxidizing reagent in the 3-step chemiluminescence (CL) chemical oxygen demand (COD) method, based on the principle of the permanganate COD (CODMn) method (JIS K0102), was developed (3-step CL CODCr method).
Direct chemiluminescence emission from the reaction of acidic permanganate and organic compounds was employed for determining the chemical oxygen demand (COD) in water (1-step CL COD). Due to the diversity of organic pollutants in water, there are no standards for COD measurements, and many compounds do not show any chemiluminescence signal in the 1-step CL COD method. As a result, this method shows a low correlation with the conventional CODMn method. In this study, a new 3-step CL COD method was developed to overcome these drawbacks. The basic principle of the 3-step CL COD method is based on the principle of "back titration" in the CODMn method: (i) the sample is treated with permanganate under heating, (ii) the excess permanganate is treated with pyrogallol, and (iii) the excess pyrogallol is measured by the chemiluminescence reaction with permanganate. The reagent concentration, sample volume, and heating temperature were optimized, and the 3-step CL COD method successfully obtained the signal from some samples that cannot be detected by 1-step CL COD method. The calibration graph is linear in the range of 0 -12.86 mg/L with a detection limit of 0.082 mg/L. This method is continuous, sensitive and low cost compared with the conventional method, and is applicable for on-site monitoring. The effect of the chloride ion was investigated, and showed an insignificant effect after two-times dilution of high-salinity samples. The correlation with the CODMn method for various organic compounds showed a good coefficient of determination, R 2 = 0.9773 (n = 16).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.