The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to microstructural/environmental-specific tissue stains, may be generated to characterize the MRI and physiological properties of biological tissues. In this paper, three quantitative MRI (qMRI) methods for characterizing white matter microstructural properties are reviewed. All of these measures measure complementary aspects of how water interacts with the tissue environment. Diffusion MRI including diffusion tensor imaging characterizes the diffusion of water in the tissues and is sensitive to the microstructural density, spacing and orientational organization of tissue membranes including myelin. Magnetization transfer imaging characterizes the amount and degree of magnetization exchange between free water and macromolecules like proteins found in the myelin bilayers. Relaxometery measures the MRI relaxation constants T1 and T2, which in white matter has a component associated with the water trapped in the myelin bilayers. The conduction of signals between distant brain regions occurs primarily through myelinated white matter tracts, thus these methods are potential indicators of pathology and structural connectivity in the brain. This paper provides an overview of the qMRI stain mechanisms, acquisition and analysis strategies, and applications for these qMRI stains.
White matter tracts of the brain allow neurons and neuronal networks to communicate and function with high efficiency. The aim of this review is to briefly introduce diffusion tensor imaging methods that examine white matter tracts and then to give an overview of the studies that have investigated white matter integrity in the brains of individuals with autism spectrum disorder (ASD). From the 48 studies we reviewed, persons with ASD tended to have decreased fractional anisotropy and increased mean diffusivity in white matter tracts spanning many regions of the brain but most consistently in regions such as the corpus callosum, cingulum, and aspects of the temporal lobe. This decrease in fractional anisotropy was often accompanied by increased radial diffusivity. Additionally, the review suggests possible atypical lateralization in some white matter tracts of the brain and a possible atypical developmental trajectory of white matter microstructure in persons with ASD. Clinical implications and future research directions are discussed. Autism Res 2012, 5: 289–313. © 2012 International Society for Autism Research, Wiley Periodicals, Inc.
Dispositional negativity—the propensity to experience and express more frequent, intense, or enduring negative affect—is a fundamental dimension of childhood temperament and adult personality. Elevated levels of dispositional negativity can have profound consequences for health, wealth, and happiness, drawing the attention of clinicians, researchers, and policy makers. Here, we highlight recent advances in our understanding of the psychological and neurobiological processes linking stable individual differences in dispositional negativity to momentary emotional states. Self-report data suggest that three key pathways—increased stressor reactivity, tonic increases in negative affect, and increased stressor exposure—explain most of the heightened negative affect that characterizes individuals with a more negative disposition. Of these three pathways, tonically elevated, indiscriminate negative affect appears to be most central to daily life and most relevant to the development of psychopathology. New behavioral and biological data provide insights into the neural systems underlying these three pathways and motivate the hypothesis that seemingly ‘tonic’ increases in negative affect may actually reflect increased reactivity to stressors that are remote, uncertain, or diffuse. Research focused on humans, monkeys, and rodents suggests that this indiscriminate negative affect reflects trait-like variation in the activity and connectivity of several key brain regions, including the central extended amygdala and parts of the prefrontal cortex. Collectively, these observations provide an integrative psychobiological framework for understanding the dynamic cascade of processes that bind emotional traits to emotional states and, ultimately, to emotional disorders and other kinds of adverse outcomes.
The central extended amygdala is an evolutionarily conserved set of interconnected brain regions that play an important role in threat processing to promote survival. Two core components of the central extended amygdala, the central nucleus of the amygdala (Ce) and the lateral bed nucleus of the stria terminalis (BST) are highly similar regions that serve complimentary roles by integrating fear- and anxiety-relevant information. Survival depends on the central extended amygdala's ability to rapidly integrate and respond to threats that vary in their immediacy, proximity, and characteristics. Future studies will benefit from understanding alterations in central extended amygdala function in relation to stress-related psychopathology.
Context Emotion regulation deficits figure prominently in generalized anxiety disorder (GAD), as well as other anxiety and mood disorders. Research examining emotion regulation and top-down modulation has implicated reduced coupling of the amygdala with prefrontal and anterior cingulate cortex (ACC), suggesting altered frontolimbic white matter connectivity in GAD. Objective To investigate structural connectivity between ventral prefrontal/ACC areas and the amygdala in GAD, and to assess associations with functional connectivity between those areas. Design Participants underwent diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) scans. Setting University magnetic resonance imaging facility. Participants Forty-nine GAD patients and 39 healthy volunteers, including a subset of 21 patients without comorbid Axis I diagnoses and 21 healthy volunteers matched for age, sex, and education. Main Outcome Measure Mean fractional anisotropy (FA) values in the left and right uncinate fasciculus, as measured by tract-based analysis for DTI data. Results Lower mean FA values in bilateral uncinate fasciculus indicated reduced frontolimbic structural connectivity in GAD. This reduction in uncinate fasciculus integrity was most pronounced for patients without comorbidity and was not observed in other white matter tracts. Across all subjects, higher FA values were associated with more negative functional coupling between the pregenual ACC and amygdala during the anticipation of aversion. Conclusions Decreased frontolimbic structural connectivity suggests a neural basis for emotion regulation deficits in GAD. The functional significance of these structural differences is underscored by decreased functional connectivity between the ACC and amygdala in subjects with reduced structural integrity of the uncinate fasciculus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.