ε-Polylysine (ε-PL) is a safe food additive that is used in the food industry globally. This study evaluated the antimicrobial and antibiofilm activity of antibacterial peptides (ε-PL) against food poisoning pathogens detected in chicken (Salmonella Enteritidis, Listeria monocytogenes, and Escherichia coli). The results showed that minimum inhibitory concentrations (MICs) ranged between 0.031–1.0 mg/mL, although most bacterial groups (75%) showed MICs of 1.0 mg/mL. The reduction in the cell viability of pathogens due to ε-PL depended on the time and concentration, and 1/2 × MIC of ε-PL killed 99.99% of pathogens after 10 h of incubation. To confirm biofilm inhibition and degradation effects, crystal violet assay and confocal laser scanning microscopy (CLSM) were used. The biofilm formation rates of four bacterial groups (Salmonella, Listeria, E. coli, and multi-species bacteria) were 10.36%, 9.10%, 17.44%, and 21.37% at 1/2 × MIC of ε-PL, respectively. Additionally, when observed under a CLSM, ε-PL was found to induce biofilm destruction and bacterial cytotoxicity. These results demonstrated that ε-PL has the potential to be used as an antibiotic and antibiofilm material for chicken meat processing.
The objective of this study was to optimize industrial-grade media for improving the biomass production of Weissella cibaria JW15 (JW15) using a statistical approach. Eleven variables comprising three carbon sources (glucose, fructose, and sucrose), three nitrogen sources (protease peptone, yeast extract, and soy peptone), and five mineral sources (K 2 HPO 4 , potassium citrate, L-cysteine phosphate, MgSO 4 , and MnSO 4 ) were screened by using the Plackett-Burman design. Consequently, glucose, sucrose, and soy peptone were used as significant variables in response surface methodology (RSM). The composition of the optimal medium (OM) was 22.35 g/l glucose, 15.57 g/l sucrose, and 10.05 g/l soy peptone, 2.0 g/l K 2 HPO 4 , 5.0 g/l sodium acetate, 0.1 g/l MgSO 4 ·7H 2 O, 0.05 g/l MnSO 4 ·H 2 O, and 1.0 g/l Tween 80. The OM significantly improved the biomass production of JW15 over an established commercial medium (MRS). After fermenting OM, the dry cell weight of JW15 was 4.89 g/l, which was comparable to the predicted value (4.77 g/l), and 1.67 times higher than that of the MRS medium (3.02 g/l). Correspondingly, JW15 showed a rapid and increased production of lactic and acetic acid in the OM. To perform a scale-up validation, batch fermentation was executed in a 5-l bioreactor at 37°C with or without a pH control at 6.0 ± 0.1. The biomass production of JW15 significantly improved (1.98 times higher) under the pH control, and the cost of OM was reduced by two-thirds compared to that in the MRS medium. In conclusion, OM may be utilized for mass producing JW15 for industrial use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.