The effect of an electron blocking layer (EBL) on the efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes (LEDs) is investigated. At low current density, the LEDs with a p-AlGaN EBL show a higher external quantum efficiency (EQE) than LEDs without an EBL. However, the EQE of LEDs without an EBL is higher than LEDs with an EBL as injection current density is increased. The improved EQE of LEDs without an EBL at high current density is attributed to the increased hole injection efficiency.
Tests performed in different regimes reveal the interplay of two edge-enhancement mechanisms in radiological images taken with coherent synchrotron light. The relative weight of the two mechanisms, related to refraction and to Fresnel edge diffraction, can be changed in a controlled way. This makes it possible to obtain different images of the same object with complementary information.
We report the growth of high-quality GaN on a Si(111) substrate using a five step-graded AlxGa1−xN (x=0.87–0.07) interlayer between GaN epilayer and AlN buffer layer by ultrahigh vacuum chemical vapor deposition. The crack density and the surface roughness of the GaN layer grown on the graded AlxGa1−xN interlayer were substantially reduced, compared to those of GaN grown on an AlN buffer layer. Significant improvement in the structural and optical properties of the GaN layer was also achieved by the use of a graded interlayer. These results are attributed to the decrease of the lattice mismatch between GaN and AlN layer, and the reduction of the thermal stress by the graded interlayer.
We report that the behavior of a low-energy π plasmon excitation in a single layer graphene (SLG) can be modified by doping external potassium (K) atoms, a feature demanded to realize the graphene plasmonics. Using high-resolution electron-energy-loss spectroscopy, we find that upon K-doping the π plasmon energy increases by 1.1 eV due to the K-induced electron density up to n = 7 × 1013 cm−2 in SLG. The four modified dispersions for different K-dopings, however, are found to merge into a single universal curve when plotted in the dimensionless coordinates indicating that the unique plasmonic character of SLG is preserved despite the K-dopings.
Despite more than a century of study, the fundamental mechanisms behind solid melting remain elusive at the nanoscale. Ultrafast phenomena in materials irradiated by intense femtosecond laser pulses have revived the interest in unveiling the puzzling processes of melting transitions. However, direct experimental validation of various microscopic models is limited due to the difficulty of imaging the internal structures of materials undergoing ultrafast and irreversible transitions. Here we overcome this challenge through time-resolved single-shot diffractive imaging using X-ray free electron laser pulses. Images of single Au nanoparticles show heterogeneous melting at the surface followed by density fluctuation deep inside the particle, which is directionally correlated to the polarization of the pumping laser. Observation of this directionality links the non-thermal electronic excitation to the thermal lattice melting, which is further verified by molecular dynamics simulations. This work provides direct evidence to the understanding of irreversible melting with an unprecedented spatiotemporal resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.