The present investigation was undertaken with the objective of formulating orodispersible film(s) of the antidepressant drug tianeptine sodium to enhance the convenience and compliance by the elderly and pediatric patients. The novel film former, lycoat NG73 (granular hydroxypropyl starch), along with different film-forming agents (hydroxypropyl methyl cellulose, hydroxyethyl cellulose, and polyvinyl alcohol), in addition to three film modifiers; namely, maltodextrin, polyvinyl pyrrolidone K90 and lycoat RS780 (pregelatinized hydroxypropyl starch) were evaluated. Eight formulae were prepared by the solvent-casting method; and were evaluated for their in vitro dissolution characteristics, in vitro disintegration time, and their physico-mechanical properties. The promising orodispersible film based on lycoat NG73 (F1); showing the greatest drug dissolution, satisfactory in vitro disintegration time and physico-mechanical properties that are suitable for orodispersible films, was evaluated for its bioavailability compared with a reference marketed product (Stablon® tablets) in rabbits. Statistical analysis revealed no significant difference between the bioavailability parameters (C(max) (ng/ml), t(max) (h), AUC(0-t) (ng hml(-1)), and AUC(0-∞) (ng hml(-1))] of the test film (F1) and the reference product. The mean ratio values (test/reference) of C(max) (89.74%), AUC(0-t) (110.9%), and AUC(0-∞) (109.21%) indicated that the two formulae exhibited comparable plasma level-time profiles. These findings suggest that the fast orodispersible film containing tianeptine is likely to become one of choices for acute treatment of depression.
Haloperidol (Hal) is one of the widely used antipsychotic drugs. When orally administered, it suffers from low bioavailability due to hepatic first pass metabolism. This study aimed at developing Hal-loaded penetration enhancer-containing spanlastics (PECSs) to increase transdermal permeation of Hal with sustained release. PECSs were successfully prepared using ethanol injection method showing reasonable values of percentage entrapment efficiency, particle size, polydispersity index and zeta potential. The statistical analysis of the ex vivo permeation parameters led to the choice of F1L – made of Span® 60 and Tween® 80 at the weight ratio of 4:1 along with 1% w/v Labrasol® – as the selected formula (SF). SF was formulated into a hydrogel by using 2.5% w/v of HPMC K4M. The hydrogel exhibited good in vitro characteristics. Also, it retained its physical and chemical stability for one month in the refrigerator. The radiolabeling of SF showed a maximum yield by mixing of 100 µl of diluted formula with 50 µl saline having 200 MBq of 99mTc and containing 13.6 mg of reducing agent (NaBH4) and volume completed to 300 µl by saline at pH 10 for 10 min as reaction time. The biodistribution study showed that the transdermal 99mTc-SF hydrogel exhibited a more sustained release pattern and longer circulation duration with pulsatile behavior in the blood and higher brain levels than the oral 99mTc-SF dispersion. So, transdermal hydrogel of SF may be considered a promising sustained release formula for Hal maintenance therapy with reduced dose size and less frequent administration than oral formula.
The aim of this work was to investigate the effects of formulation variables on development of carvedilol (CAR) proniosomal gel formulations as potential transdermal delivery systems. Different non-ionic surfactants; polyoxyethylene alkyl ethers, namely Brij 78, Brij 92, and Brij 72; and sorbitan fatty acid esters (Span 60) were evaluated for their applicability in preparation of CAR proniosomal gels. A 2(3) full factorial design was employed to evaluate individual and combined effects of formulation variables, namely cholesterol content, weight of proniosomes, and amount of CAR added on performance of proniosomes. Prepared proniosomes were evaluated regarding entrapment efficiency (EE%), vesicle size, and microscopic examination. Also, CAR release through cellulose membrane and permeation through hairless mice skin were investigated. Proniosomes prepared with Brij 72 and Span 60 showed better niosome forming ability and higher EE% than those prepared with Brij 78 and Brij 92. Higher EE% was obtained by increasing both weight of proniosomes and amount of CAR added, and decreasing cholesterol content. Release rate through cellulose membrane was inversely affected by weight of proniosomes. In Span 60 proniosomes, on increasing percent of cholesterol, a decrease in release rate was observed. While in Brij 72 proniosomes, an enhancement in release rate was observed on increasing amount of CAR added. Permeation experiments showed that skin permeation was mainly affected by weight of proniosomes and that Span 60 proniosomal gels showed higher permeation enhancing effect than Brij 72. Proniosomal gel could constitute a promising approach for transdermal delivery of CAR.
Voriconazole (VCZ) is a well-known broad spectrum triazole antifungal, mainly used orally and intravenously. The study aimed to formulate VCZ into ultradeformable elastosomes for the topical treatment of ocular fungal keratitis. Different formulae were prepared using a modified ethanol injection method, employing a 3 3 Box-Behnken design. They were characterized by measuring their entrapment efficiency (EE%), particle size (PS), polydispersity index (PDI) and zeta potential (ZP). The optimized formula was subjected to further in vitro investigations and in vivo evaluation studies. The prepared vesicles had satisfactory EE%, PS, PDI and ZP values. The numerical optimization process suggested an optimal elastosomal formula (OE) composed of phosphatidyl choline and brij S100 at the weight ratio of 3.62: 1, 0.25%w/v hyaluronic acid and 5% (percentage from phosphatidyl choline/brij mixture) polyvinyl alcohol. It had high EE (72.6%), acceptable PS and PDI (362.4 nm and 0.25, respectively) and highly negative ZP of −41.7 mV. OE exhibited higher elasticity than conventional liposomes, with acceptable stability for three months. Transmission electron microscopy demonstrated the spherical morphology of vesicles with an external transparent coat of Hyaluronic acid. OE was expected to cause no ocular irritation or blurring in vision as reflected by pH and refractive index measurements. The histopathological study revealed the safety of OE for ocular use. The fungal susceptibility testing using Candida albicans demonstrated the superiority of OE to VCZ suspension, with greater and more durable growth inhibition. Therefore, OE can be regarded as a promising formula, achieving both safety and efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.