The whole Mediterranean is suffering today because of climate changes, with projections of more severe impacts predicted for the coming decades. Egypt, on the southeastern flank of the Mediterranean Sea, is facing many challenges for water and food security, further exacerbated by the arid climate conditions. The Nile River represents the largest freshwater resource for the country, with a minor contribution coming from rainfall and from non-renewable groundwater aquifers. In more recent years, another important source is represented by non-conventional sources, such as treated wastewater reuse and desalination; these water resources are increasingly becoming valuable additional contributors to water availability. Moreover, although rainfall is scarce in Egypt, studies have shown that rainfall and flash floods can become an additional available source of water in the future. While presently rare, heavy rainfalls and flash floods are responsible for huge losses of lives and infrastructure especially in parts of the country, such as in the Sinai Peninsula. Despite the harsh climate, water from these events, when opportunely conveyed and treated, can represent a precious source of freshwater for small communities of Bedouins. In this work, rainfall climatology and flash flood events are presented, together with a discussion about the dynamics of some selected episodes and indications about future climate scenarios. Results can be used to evaluate the water harvesting potential in a region where water is scarce, also providing indications for improving the weather forecast. Basic information needed for identifying possible risks for population and infrastructures, when fed into hydrological models, could help to evaluate the flash flood water volumes at the outlets of the effective watershed(s). This valuable information will help policymakers and local governments to define strategies and measures for water harvesting and/or protection works.
This study develops a response-based hydrologic model for long-term (continuous) rainfall-runoff simulations over the catchment areas of big rivers. The model overcomes the typical difficulties in estimating infiltration and evapotranspiration parameters using a modified version of the Soil Conservation Service curve number SCS-CN method. In addition, the model simulates the surface and groundwater hydrograph components using the response unit-hydrograph approach instead of using a linear reservoir routing approach for routing surface and groundwater to the basin outlet. The unit-responses are Geographic Information Systems (GIS)-pre-calculated on a semi-distributed short-term basis and applied in the simulation in every time step. The unit responses are based on the time-area technique that can better simulate the real routing behavior of the basin. The model is less sensitive to groundwater infiltration parameters since groundwater is actually controlled by the surface component and not the opposite. For that reason, the model is called the SCHydro model (Surface Controlled Hydrologic model). The model is tested on the upper Blue Nile catchment area using 28 years daily river flow data set for calibration and validation. The results show that SCHydro model can simulate the long-term transforming behavior of the upper Blue Nile basin. Our initial assessment of the model indicates that the model is a promising tool for long-term river flow simulations, especially for long-term forecasting purposes due to its stability in performing the water balance.
Urban flooding is considered one of the hazardous disasters in metropolitan areas, especially for those located in arid regions. Due to the associated risks of climate change in increasing the frequency of extreme rainfall events, climate-induced migration to urban areas leads to the intensification of urban settlements in arid regions as well as an increase in urban expansion towards arid land outskirts. This not only stresses the available infrastructure but also produces substantial social instability due to unplanned urban growth. Therefore, this study sheds light on the main factors that are increasing the flood risk, through examining the consequences of rapid urban growth and the performance of drainage networks on urban flood volumes and comparing it with the effects induced by climate change on the surface runoff. The effect of urbanization is assessed through land use maps showing the historical urbanization conditions for the past 30 years, while considering the role of urban planning and its effect on exacerbating surface runoff. Six climate projection scenarios adopted from three Global Climate Models under two Representative Concentration Pathways (4.5 and 8.5) during the period (2006–2020) were compared to ground observed rainfall data to identify which climate scenario we are likely following and then evaluate its effects on the current rainfall trends up to the year 2050. The significance of the drainage design in the mitigation or increase of surface runoff is evaluated through capacity-load balance during regular and extreme storms. It is found that using impervious surfaces coupled with poor planning causing the blockage of natural flood plains led to an increase in the total runoff of about 180%, which is three times more than the effect induced by climate change for the same analysis period. Climate change decreased the intensities of 2- and 5-year rainfall events by 6% while increasing the intensities of extreme events corresponds to 100-year by 17%. Finally, the urban drainage had a distinguished role in increasing surface runoff, as 70% of the network performed poorly during the smallest rainfall event of 2-year return period. The study emphasizes the urgency to re-evaluate the existing and future urban drainage design approach: although urban development and climate change have inevitable effects on the increase in urban flood volumes, it could be alleviated through improved infrastructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.