This study sought to monitor the presence of carbapenem-resistant Enterobacteriaceae (CRE) and the proportion New Delhi metallo-beta-lactamase 1 (NDM-1)-producing bacteria between August 2010 and December 2012 in a surgical hospital in Vietnam. We identified 47 CRE strains from a total of 4,096 Enterobacteriaceae isolates (1.1 %) that were NDM-1-positive from 45 patients admitted to 11 different departments, with the majority being from the urology department. The NDM-1 gene was found in seven different species. Genotyping revealed limited clonality of NDM-1-positive isolates. Most of the isolates carried the NDM-1 gene on a plasmid and 17.8 % (8/45) of those were readily transferable. We found five patients at admission and one patient at discharge with NDM-1-positive bacteria in their stool. From 200 screening environmental hospital samples, five were confirmed to be NDM-1-positive and included Acinetobacter species (n = 3) and Enterobacter aerogenes (n = 2). The results reveal that NDM-1-producing Enterobacteriaceae are commonly isolated in patients admitted to a Vietnamese surgical hospital and are also detected in the hospital environment.
Acinetobacter baumannii is an important cause of multidrug-resistant hospital acquired infections in the world. Here, we investigate the presence of NDM-1 and other carbapenemases among carbapenem-resistant A. baumannii isolated between August 2010 and December 2014 from three large hospitals in Hanoi, Vietnam. We identified 23/582 isolates (4 %) (11 from hospital A, five from hospital B, and seven from hospital C) that were NDM-1 positive, and among them 18 carried additional carbapenemase genes, including seven isolates carrying NDM-1, IMP-1, and OXA-58 with high MICs for carbapenems. Genotyping indicated that NDM-1 carrying A. baumannii have expanded clonally in these hospitals. Five new STs (ST1135, ST1136, ST1137, ST1138, and ST1139) were identified. One isolate carried NDM-1 on a plasmid belonging to the N-repA replicon type; no NDM-1-positive plasmids were identified in the other isolates. We have shown the extent of the carbapenem resistance and the local clonal spread of A. baumannii carrying NDM-1 in these hospitals; coexistence of NDM-1 and IMP-1 is reported for the first time from Vietnam here, and this will further seriously limit future therapeutic options.
Although the spread of plasmid-mediated antibiotic-resistant bacteria is a public health concern, food contamination with plasmid-mediated antibiotic-resistant Escherichia coli has not been well investigated in Vietnam. The aim of this study was to describe the prevalence of colistin-resistant, carbapenem-resistant and endemic blaCTX−M in extended-spectrum β-lactamase (ESBL)-producing E. coli isolates. Colistin- and carbapenem-resistant ESBL-producing E. coli were isolated from chickens in Vietnam and Japan. The results showed that 52% and 93% of Vietnamese chicken was isolated with colistin-resistant and AmpC/ESBL-producing E. coli, respectively, while 52.7% of Japanese chickens were isolated with AmpC/ESBL-producing E. coli. Carbapenem-resistant E. coli has not been isolated in Vietnam or Japan. Genotyping revealed that colistin-resistant E. coli harboured mcr-1, and most of the AmpC/ESBL-related genes were blaCTX−M−55 and blaCTX−M−65 together with blaTEM in Vietnamese chickens, and blaCMY−2 in Japanese chickens. Multidrug resistance analysis showed that ESBL-producing E. coli isolates were more resistant to quinolones, streptomycin, and chloramphenicol compared with colistin-resistant E. coli isolates from Vietnam, suggesting selection in ESBL-producing E. coli for multiple antibiotic resistance genes. In conclusion, colistin-resistant E. coli was detected in about half of the chicken meat samples, the majority of which were found to harbour mcr-1. The high prevalence of ESBL-producing E. coli has remained constant across the last five years, and the predominant blaCTX−M for ESBL-producing E. coli was found to be blaCTX−M−55 or blaCTX−M−65, with the coexistence of blaTEM in Vietnam. Our results can be implemented in monitoring systems to combat the development of antimicrobial resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.