Thermo-electric Coolers (TECs) nowadays are applied in a wide range of thermal energy systems. This is due to their superior features where no refrigerant and dynamic parts are needed. TECs generate no electrical or acoustical noise and are environmentally friendly. Over the past decades, many researches were employed to improve the efficiency of TECs by enhancing the material parameters and design parameters. The material parameters are restricted by currently available materials and module fabricating technologies. Therefore, the main objective of TECs design is to determine a set of design parameters such as leg area, leg length and the number of legs. Two elements that play an important role when considering the suitability of TECs in applications are rated of refrigeration (ROR) and coefficient of performance (COP). In this paper, the review of some previous researches will be conducted to see the diversity of optimization in the design of TECs in enhancing the performance and efficiency. After that, single-objective optimization problems (SOP) will be tested first by using Genetic Algorithm (GA) and Simulated Annealing (SA) to optimize geometry properties so that TECs will operate at near optimal conditions. Equality constraint and inequality constraint were taken into consideration.
In this chapter, the technical issues of two-stage TEC were discussed. After that, a new method of optimizing the dimension of TECs using differential evolution to maximize the cooling rate and coefficient of performance was proposed. A input current to hot side and cold side of and the number ratio between the hot stage and cold stage are searched the optima solutions. Thermal resistance is taken into consideration. The results of optimization obtained by using differential evolution were validated by comparing with those obtained by using genetic algorithm and show better performance in terms of stability, computational efficiency, robustness. This work revealed that differential evolution more stable than genetic algorithm and the Pareto front obtained from multi-objective optimization balances the important role between cooling rate and coefficient of performance.
Thermo-electric Coolers (TECs) nowadays are applied in a wide range of thermal energy systems. This is due to its superior features where no refrigerant and dynamic parts are needed. TECs generate no electrical or acoustical noise and are environment friendly. Over the past decades, many researches were employed to improve the efficiency of TECs by enhancing the material parameters and design parameters. The material parameters are the most significant, but they are restricted by currently available materials and module fabricating technologies. Therefore, the main objective of TECs design is to determine a set of design parameters such as leg area, leg length, and the number of legs. Two elements that play an important role when considering the suitability of TECs in applications are rated of refrigeration (ROR) and coefficient of performance (COP). In this chapter, the technical issues of TECs were discussed. After that, a new method of optimizing the dimension of TECs using collaborative simulated annealing genetic algorithm (CSAGA) to maximize the rate of refrigeration (ROR) was proposed. Equality constraint and inequality constraint were taken into consideration. The results of optimization obtained by using CSAGA were validated by comparing with those obtained by using stand-alone genetic algorithm and simulated annealing optimi- zation technique. This work revealed that CSAGA was more robust and more reliable than stand-alone genetic algorithm and simulated annealing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.