COVID‐19 vaccines prevent severe forms of the disease, but do not warrant complete protection against breakthrough infections. This could be due to suboptimal mucosal immunity at the site of virus entry, given that all currently approved vaccines are administered via the intramuscular route. In this study, we assessed humoral and cellular immune responses in BALB/c mice after intranasal and intramuscular immunization with adenoviral vector ChAdOx1‐S expressing full‐length Spike protein of SARS‐CoV‐2. We showed that both routes of vaccination induced a potent IgG antibody response, as well as robust neutralizing capacity, but intranasal vaccination elicited a superior IgA antibody titer in the sera and in the respiratory mucosa. Bronchoalveolar lavage from intranasally immunized mice efficiently neutralized SARS‐CoV‐2, which has not been the case in intramuscularly immunized group. Moreover, substantially higher percentages of epitope‐specific CD8 T cells exhibiting a tissue resident phenotype were found in the lungs of intranasally immunized animals. Finally, both intranasal and intramuscular vaccination with ChAdOx1‐S efficiently protected the mice after the challenge with recombinant herpesvirus expressing the Spike protein. Our results demonstrate that intranasal application of adenoviral vector ChAdOx1‐S induces superior mucosal immunity and therefore could be a promising strategy for putting the COVID‐19 pandemic under control.
Background: Tick-borne encephalitis virus (TBEV) is one of the most significant arboviruses affecting the human central nervous system (CNS) in Europe. Data on cytokine response in TBEV infection are limited. Methods: We analyzed the cytokine response in serum, cerebrospinal fluid (CSF) and urine samples of patients with TBE. The control group consisted of patients with ‘febrile headache’ who had normal CSF cytology. The panel included 12 cytokines: TNF-α, IL-6, Th1 (IL-2, IFN-γ), Th2 (IL-4, IL-5, IL-13), Th9 (IL-9), Th17 (IL-17A, IL-17F), Th22 (IL-22) cytokines and IL-10. Results: TBE patients were more likely to have increased levels of IL-6 and IFN-γ in CSF compared to controls (85.7% vs. 58.8% and 85.7% vs. 47.1%, respectively). However, concentrations of IL-6 (the most abundant cytokine in the CSF of both groups), IL-10 and IL-9 were lower in TBEV patients compared with controls, but the difference was statistically significant for IL-9 only (p = 0.001). By analyzing the cytokine levels in different clinical samples, all measured cytokines were detected in the serum, with the highest concentrations found for IFN-γ, TNF-α, IL-10, IL-17F and IL-22. Higher concentrations of cytokines in the CSF compared with serum were observed for IL-5, IL-6 and IL-22. All cytokines except IL-13 were detectable in urine but in a small proportion of patients, except for IL-22, which was detectable in 95.8% of patients. Conclusions: Cytokine composition in different clinical samples of TBE patients reveals a different network of early innate immune response cytokines, Th1, Th2, Th9, Th22, Th17 and anti-inflammatory cytokines.
Legionellae are gram-negative bacteria most commonly found in freshwater ecosystems and purpose-built water systems. In humans, the bacterium causes Legionnaires’ disease (LD) or a Pontiac fever. In this study, the different waters (drinking water, pool water, cooling towers) in which Legionella pneumophila has been isolated were studied to assess the possible risk of bacterial spreading in the population. The influence of physical and chemical parameters, and interactions with Acanthamoeba castellanii on L. pneumophila, were analyzed by Heterotrophic Plate Count, the Colony-forming units (CFU) methods, transmission electron microscopy (TEM), and Sequence-Based Typing (SBT) analysis. During the study period (2013–2019), a total of 1932 water samples were analyzed, with the average annual rate of Legionella-positive water samples of 8.9%, showing an increasing trend. The largest proportion of Legionella-positive samples was found in cooling towers and rehabilitation centers (33.9% and 33.3%, respectively). Among the isolates, L. pneumophila SGs 2–14 was the most commonly identified strain (76%). The survival of Legionella was enhanced in the samples with higher pH values, while higher electrical conductivity, nitrate, and free residual chlorine concentration significantly reduced the survival of Legionella. Our results show that growth in amoeba does not affect the allelic profile, phenotype, and morphology of the bacterium but environmental L. pneumophila becomes more resistant to pasteurization treatment.
Increasing evidence points to host genetics as a factor in COVID-19 prevalence and outcome. CCR5 is a receptor for proinflammatory chemokines that are involved in host responses, especially to viruses. The CCR5-Δ32 minor allele is an interesting variant, given the role of CCR5 in some viral infections, particularly HIV-1. Recent studies of the impact of CCR5-Δ32 on COVID-19 risk and severity have yielded contradictory results. This ecologic study shows that the CCR5-Δ32 allelic frequency in a European population was significantly negatively correlated with the number of COVID-19 cases (p=0.035) and deaths (p=0.006) during the second pandemic wave. These results suggest that CCR5-Δ32 may be protective against SARS-CoV-2 infection, as it is against HIV infection, and could be predictive of COVID-19 risk and severity. Further studies based on samples from populations of different genetic backgrounds are needed to validate these statistically obtained findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.