We have used density functional theory (DFT) to study adsorption of H2S molecules onto defective graphene as a function of vacancy concentration. The calculations are performed with the Quantum Espresso code, a plane‐wave realization of the DFT with norm‐conserving pseudopotentials. The Perdew et al. generalized gradient approximation to the density functional for exchange correlation energy of a many‐electron system is used. The computations show that a hydrogen sulfide molecule interacts stronger with the carbon atoms surrounding the vacancy than with the carbon atoms in a perfect arrangement. The most favorable energetically configuration is the one with the sulfur atom heading the center of the vacancy. Such a configuration facilitates covalent binding of the sulfur atom with three carbon atoms with unsaturated bonds. The density of states of perfect, defective graphene and defective graphene with chemisorbed sulfur demonstrate that the systems change their conductivity. The chemisorption is followed by a release of the hydrogen atoms, which form a H2 molecule. In the presence of more isolated vacancies per unit cell, more H2S molecules are chemisorbed. This process opens very interesting applications in the environmental and energy research. © 2012 Wiley Periodicals, Inc.
Recent reliable experiments have reported magnetism in defective graphene while the perfect one is nonmagnetic. In this work, we study the role of the vacancy concentration and spatial distribution on the orientation and magnitude of the magnetic moments induced by the defects with the help of the Quantum Espresso code, which is a plane‐wave implementation of the density functional theory. In the case of more than one vacancy per supercell, interaction between the total magnetic moments at each defective site occurs. The interaction is ferromagnetic for vacancies in the same sublattices and it is antiferromagnetic for the case of different sublattices. © 2012 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.