As pharmacodynamic drug-drug interactions (PD DDIs) could lead to severe adverse effects in patients, it is important to identify potential PD DDIs in drug development. The signaling starting from drug targets is propagated through protein-protein interaction (PPI) networks. PD DDIs could occur by close interference on the same targets or within the same pathways as well as distant interference through cross-talking pathways. However, most of the previous approaches have considered only close interference by measuring distances between drug targets or comparing target neighbors. We have applied a random walk with restart algorithm to simulate signaling propagation from drug targets in order to capture the possibility of their distant interference. Cross validation with DrugBank and Kyoto Encyclopedia of Genes and Genomes DRUG shows that the proposed method outperforms the previous methods significantly. We also provide a web service with which PD DDIs for drug pairs can be analyzed at http://biosoft.kaist.ac.kr/targetrw.
Unintended effects of drugs can be caused by various mechanisms. Conventional analysis of unintended effects has focused on the target proteins of drugs. However, an interaction with off-target tissues of a drug might be one of the unintended effect-related mechanisms. We propose two processes to predict a drug's unintended effects by off-target tissue effects: 1) identification of a drug's off-target tissue and; 2) tissue protein - symptom relation identification (tissue protein - symptom matrix). Using this method, we predicted that 1,177 (10.7%) side-effects were related to off-target tissue effects in 11,041 known side-effects. Off-target tissues and unintended effects of successful repositioning drugs were also predicted. The effectiveness of relations of the proposed tissue protein - symptom matrix were evaluated by using the literature mining method. We predicted unintended effects of drugs as well as those effect-related off-target tissues. By using our prediction, we are able to reduce drug side-effects on off-target tissues and provide a chance to identify new indications of drugs of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.