The Philippines has a high incidence of tuberculosis disease (TB), with an increasing prevalence of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) strains making its control difficult. Although the M . tuberculosis “Manila” ancient lineage 1 strain-type is thought to be prevalent in the country, with evidence of export to others, little is known about the genetic diversity of circulating strains. By whole genome sequencing (WGS) 178 isolates from the Philippines National Drug Resistance Survey, we found the majority (143/178; 80.3%) belonged to the lineage 1 Manila clade, with the minority belonging to lineages 4 (European-American; n = 33) and 2 (East Asian; n = 2). A high proportion were found to be multidrug-resistant (34/178; 19.1%), established through highly concordant laboratory drug susceptibility testing and in silico prediction methods. Some MDR-TB isolates had near identical genomic variation, providing potential evidence of transmission. By placing the Philippine isolates within a phylogeny of global M . tuberculosis (n > 17,000), we established that they are genetically similar to those observed outside the country, including a clade of Manila-like strain-types in Thailand. An analysis of the phylogeny revealed a set of ~200 SNPs that are specific for the Manila strain-type, and a subset can be used within a molecular barcode. Sixty-eight mutations known to be associated with 10 anti-TB drug resistance were identified in the Philippine strains, and all have been observed in other populations. Whilst nine putative streptomycin resistance conferring markers in gid (8) and rrs (1) genes appear to be novel and with functional consequences. Overall, this study provides an important baseline characterisation of M . tuberculosis genetic diversity for the Philippines, and will fill a gap in global datasets and aid the development of a nation-wide database for epidemiological studies and clinical decision making. Further, by establishing a molecular barcode for detecting Manila strains it will assist with the design of diagnostic tools for disease control activities.
The Omicron SARS-CoV-2 variant led to a dramatic global epidemic wave following detection in South Africa in November, 2021. The Omicron lineage BA.1 was dominant and responsible for most SARS-CoV-2 outbreaks in countries around the world during December 2021-January 2022, whilst other Omicron lineages including BA.2 accounted for the minority of global isolates. Here, we describe the Omicron wave in the Philippines by analysing genomic data. Our results identify the presence of both BA.1 and BA.2 lineages in the Philippines in December 2021, before cases surged in January 2022. We infer that only lineage BA.2 underwent sustained transmission in the country, with an estimated emergence around November 18th, 2021 [95% highest posterior density: November 6-28th], whilst despite multiple introductions BA.1 transmission remained limited. These results suggest the Philippines was one of the earliest areas affected by BA.2, and reiterate the importance of whole-genome sequencing for monitoring outbreaks.
Antimicrobial resistance (AMR) represents a global threat to public health and security. Misuse of antibiotics is the leading cause of AMR worldwide. Infections that are typically easily treatable can become life-threatening or even deadly. Multidrug-resistant (MDR) tuberculosis (TB) (defined as resistance to at least rifampicin and isoniazid, the two most powerful first-line anti-TB drugs) and extensively drug-resistant (XDR)-TB (defined as MDR-TB with additional resistance to any fluoroquinolone and a second-line injectable (SLI) agent) are forms of TB that are complex to treat, require longer and more toxic regimens [1], and have considerably worse prognosis and outcome [2, 3]. Resistance to anti-TB drugs poses a major challenge to ending the global TB epidemic by 2030 [4]. To estimate the burden of drug-resistant TB, and plan diagnostic and treatment services, surveillance of drug resistance among TB patients has been conducted worldwide since the 1990s [5].
The Omicron SARS-CoV-2 variant led to a dramatic global epidemic wave following detection in South Africa in November, 2021. The Omicron lineage BA.1 was dominant and responsible for most domestic outbreaks during December 2021-January 2022, whilst other Omicron lineages including BA.2 accounted for the minority of global isolates. Here, we describe the Omicron wave in the Philippines by analysing genomic data. Our results identify the presence of both BA.1 and BA.2 lineages in the Philippines in December 2021, before cases surged in January 2022. We infer that only lineage BA.2 underwent sustained transmission in the country, with an estimated emergence around November 18th, 2021 [95% highest posterior density: November 6-28th], whilst despite multiple introductions BA.1 transmission remained limited. These results suggest the Philippines was one of the earliest areas affected by BA.2, and reiterate the importance of whole-genome sequencing for monitoring outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.