There is increasing interest in the use of so-called 'extrafine' aerosols to target the small airways in the management of asthma and COPD. Using previously presented deposition data, we assessed whether submicron (<1μm) particles can improve central and deep lung deposition. Our data show instead that particles in the range 1-3μm are much more relevant in this respect. Based on this finding the Symbicort Turbuhaler, Seretide Diskus, Rolenium Elpenhaler and Foster (Fostair) NEXThaler ICS/LABA combination DPIs were tested in vitro as a function of the pressure drop (2, 4 and 6kPa) across the inhaler. Obtained fine particle fractions (FPFs) <5μm (as percent of label claim) were divided into subfractions <1, 1-3 and 3-5μm. Differences of up to a factor of 4 were found between the best (Turbuhaler) and worst performing DPI (Elpenhaler), particularly for the FPF in the size range 1-3μm. The NEXThaler, described as delivering 'extrafine' particles, did not appear to be superior in this size range. The marked differences in amount and size distribution of the aerosols between the devices in this study must cause significant differences in the total lung dose and drug distribution over the airways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.