The homing journeys of nine loggerhead turtles translocated from their nesting beach to offshore release sites, were reconstructed through Argos and GPS telemetry while their water-related orientation was simultaneously recorded at high temporal resolution by multi-sensor data loggers featuring a three-axis magnetic sensor. All turtles managed to return to the nesting beach area, although with indirect routes encompassing an initial straight leg not precisely oriented towards home, and a successive homebound segment carried out along the coast. Logger data revealed that, after an initial period of disorientation, turtles were able to precisely maintain a consistent direction for several hours while moving in the open sea, even during night-time. Their water-related headings were in accordance with the orientation of the resulting route, showing little or no effect of current drift. This study reveals a biphasic homing strategy of displaced turtles involving an initial orientation weakly related to home and a successive shift to coastal navigation, which is in line with the modern conceptual framework of animal migratory navigation as deriving from sequential mechanisms acting at different spatial scales.
Aim: Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts.
Location: Global.Methods: We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections.Results: Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex.However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links.Main conclusions: Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.