Rapid progress in the genetic circuit design enabled whole-cell biosensors (WCBs) to become prominent in detecting an extensive range of analytes with promise in many fields, from medical diagnostics to environmental toxicity assessment. However, several drawbacks, such as high background signal or low precision, limit WCBs to transfer from proof-of-concept studies to real-world applications, particularly for heavy metal toxicity monitoring. For an alternative WCB module design, we utilized Bxb1 recombinase that provides tight control as a switch to increase dose-response behavior concerning leakiness. The modularity of Bxb1 recombinase recognition elements allowed us to combine an engineered semi-specific heat shock response (HSR) promoter, sensitive to stress conditions including toxic ions such as cadmium, with cadmium resistance regulatory elements; a cadmium-responsive transcription factor and its cognitive promoter. We optimized the conditions for the recombinase-based cadmium biosensor to obtain increased fold change and shorter response time. This system can be expanded for various heavy metals to make an all-in-one type of WCB, even using semi-specific parts of a sensing system.
RNA - protein binding plays an important role in regulating protein activity by affecting localization and stability. While proteins are usually targeted via small molecules or other proteins, easy-to-design and synthesize small RNAs are a rather unexplored and promising venue. The problem is the lack of methods to generate RNA molecules that have the potential to bind to certain proteins. Here, we propose a method based on generative adversarial networks (GAN) that learn to generate short RNA sequences with natural RNA-like properties such as secondary structure and free energy. Using an optimization technique, we fine-tune these sequences to have them bind to a target protein. We use RNA-protein binding prediction models from the literature to guide the model. We show that even if there is no available guide model trained specifically for the target protein, we can use models trained for similar proteins, such as proteins from the same family, to successfully generate a binding RNA molecule to the target protein. Using this approach, we generated piRNAs that are tailored to bind to SOX2 protein using models trained for its relative (SOX15, SOX14, and SOX7) and experimentally validated in vitro that the top-2 molecules we generated specifically bind to SOX2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.