Identification of biomarkers that predict responses to hypomethylating agents (HMAs) will allow optimal strategies for epigenetic therapy in myelodysplastic syndromes (MDS) to be established. Serum miR-21 was quantitatively measured in 58 MDS patients treated with HMAs and 14 healthy controls. Serum miR-192 was an internal control, and diagnostic performance was evaluated according to receiver operating characteristics (ROCs). ROC analysis indicated that serum miR-21 levels differentiated responders from non-responders with an area under the curve of 0.648 (95% confidence, 0.49 to 0.72). The baseline level of serum miR-21 was significantly lower in the responder group than in the non-responder group (P = 0.041). The overall response rate (ORR) of the high miR-21 group was significantly lower than that of the low miR-21 group (41.2 vs. 73.2%, P = 0.021). Progression-free survival (PFS) was significantly inferior in the high group versus the low group (14.0 vs. 44.5 months, P = 0.001). Multivariate analyses revealed that the initial serum miR-21 level (P = 0.001) and circulating blasts (P = 0.007) were prognostic factors for PFS. Serum miR-21 level was significantly associated with ORR and PFS in MDS patients treated with HMAs. Although validation with a large prospective study is required, serum miR-21 is a potential biomarker of epigenetic therapy in MDS patients.
PurposeThe modified Glasgow Prognostic Score (mGPS) consisting of serum C-reactive protein and albumin levels, shows significant prognostic value in several types of tumors. We evaluated the prognostic significance of mGPS in 285 patients with diffuse large B cell lymphoma (DLBCL), retrospectively.Materials and MethodsAccording to mGPS classification, 204 patients (71.5%) had an mGPS of 0, 57 (20%) had an mGPS of 1, and 24 (8.5%) had an mGPS of 2.ResultsOur study found that high mGPS were associated with poor prognostic factors including older age, extranodal involvement, advanced disease stage, unfavorable International Prognostic Index scores, and the presence of B symptoms. The complete response (CR) rate after 3 cycles of R-CHOP chemotherapy was higher in patients with mGPS of 0 (53.8%) compared to those with mGPS of 1 (33.3%) or 2 (25.0%) (p=0.001). Patients with mGPS of 0 had significantly better overall survival (OS) than those with mGPS=1 and those with mGPS=2 (p=0.036). Multivariate analyses revealed that the GPS score was a prognostic factor for the CR rate of 3 cycle R-CHOP therapy (p=0.044) as well as OS (p=0.037).ConclusionmGPS can be considered a potential prognostic factor that may predict early responses to R-CHOP therapy in DLBCL patients.
Background: In acute myeloid leukemia (AML), internal tandem duplication mutations in the FLT3 tyrosine kinase receptor (FLT3-ITD) are associated with a dismal outcome. Although uncoordinated 51-like kinase 1 (ULK1), which plays a central role in the autophagy pathway, has emerged as a novel therapeutic target for various cancers, its role in FLT3-ITD AML remains elusive. In this study, we evaluated the effects of ULK1 inhibition on leukemia cell death in FLT3-ITD AML. Method: We evaluated ULK1 expression and the levels of apoptosis and autophagy following ULK1 inhibition in FLT3-ITD AML cell lines and investigated the mechanism underlying apoptosis induced by ULK1 inhibition. Statistical analysis was performed using GraphPad Prism 4.0 (GraphPad Software Inc). Results: FLT3-ITD AML cells showed significantly higher ULK1 expression than FLT3-wild-type (WT) AML cells. Two ULK1 inhibitors, MRT 68921 and SBI-0206965, induced apoptosis in FLT3-ITD AML cells, with relatively minimal effects on FLT3-WT AML cells and normal CD34-positive cells. Apoptosis induction by ULK1 inhibition was associated with caspase pathway activation. Interestingly, ULK1 inhibition paradoxically also induced autophagy, showing synergistic interaction with autophagy inhibitors. Hence, autophagy may act as a prosurvival mechanism in FLT3-ITD AML cells. FLT3-ITD protein degradation and inhibition of the ERK, AKT, and STAT5 pathways were also observed in FLT3-ITD AML cells following treatment with ULK1 inhibitors. Conclusion: ULK1 is a viable drug target and ULK1 inhibition may represent a promising therapeutic strategy against FLT3-ITD AML.
BackgroundOnly a few patients who experience AML relapse derive lasting benefit from re-induction therapy. The utility of reassessing the disease karyotype at relapse is unclear. The main goals of this study were to identify prognostic factors for AML relapse and to determine the prognostic utility of karyotypic change between diagnosis and relapse as a variable for predicting response to salvage therapy for relapsed AML.MethodsThis retrospective study included 58 patients with relapsed AML treated at the Yonsei University College of Medicine between 2005 and 2010. Karyotypes at both diagnosis and relapse were available for 45 patients (77%). A change in karyotype at relapse was observed in 17 of 45 cases (37%), and no change was noted in 28 of 45 cases (62%).ResultsKaryotypic changes between diagnosis and relapse were associated with the response rate (RR) to salvage therapy (P=0.016). Overall survival (OS) and event-free survival (EFS) in the group with karyotypic changes between diagnosis and relapse were significantly different from those with no karyotypic changes (P=0.004 and P=0.010, respectively). We applied multiple multivariate Cox regression analyses to identify independent prognostic factors for overall response (OR), OS, and EFS. A change in karyotype between diagnosis and relapse was significantly associated with OS (P=0.023; RR=2.655) and EFS (P=0.033; RR=2.831).ConclusionKaryotypic changes between the diagnosis and relapse of AML could be used to predict outcomes and tailor clinical and biological therapeutic strategies for relapsed AML patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.