Novel tricyclic Ras farnesyl-protein transferase (FPT) inhibitors are described. A comprehensive structure-activity relationship (SAR) study of compounds arising from substitution at the 3-position of the tricyclic pyridine ring system has been explored. In the case of halogens, the chloro, bromo, and iodo analogues 19, 22, and 28 were found to be equipotent. However, the fluoro analogue 17 was an order of magnitude less active. Whereas a small alkyl substituent such as a methyl group resulted in a very potent FPT inhibitor (SCH 56580), introduction of bulky substituents such as tert-butyl, compound 33, or a phenyl group, compound 29, resulted in inactive FPT inhibitors. Polar groups at the 3-position such as amino 5, alkylamino 6, and hydroxyl 12 were less active. Whereas compound SCH 44342 did not show appreciable in vivo antitumor activity, the 3-bromo-substituted pyridyl N-oxide amide analogue 38 was a potent FPT inhibitor that reduced tumor growth by 81% when administered q.i.d. at 50 mpk and 52% at 10 mpk. These compounds are nonpeptidic and do not contain sulfhydryl groups. They selectively inhibit FPT and not geranylgeranyl-protein transferase-1 (GGPT-1). They also inhibit H-Ras processing in COS monkey kidney cells and soft agar growth of Ras-transformed cells.
The synthesis of a variety of novel 4-amido, 4-carbamoyl and 4-carboxamido derivatives of 1-(8-chloro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-yl) piperazine to explore the SAR of this series of FPT inhibitors is described. This resulted in the synthesis of the 4- and 3-pyridylacetyl analogues 45a and 50a, respectively, both of which were orally active but were found to be rapidly metabolized in vivo. Identification of the principal metabolites led to the synthesis of a variety of new compounds that would be less readily metabolized, the most interesting of which were the 3- and 4-pyridylacetyl N-oxides 80a and 83a. Novel replacements for the pyridylacetyl moiety were also sought, and this resulted in the discovery of the 4-N-methyl and 4-N-carboxamidopiperidinylacetyl derivatives 135a and 160a, respectively. All of these derivatives exhibited greatly improved pharmacokinetics. The synthesis of the corresponding 3-bromo analogues resulted in the discovery of the 4-pyridylacetyl N-oxides 83b (+/-) and 85b [11S(-)] and the 4-carboxamidopiperidinylacetamido derivative 160b (+/-), all of which exhibited potent FPT inhibition in vitro. All three showed excellent oral bioavailability in vivo in nude mice and cynomolgus monkeys and exhibited excellent antitumor efficacy against a series of tumor cell lines when dosed orally in nude mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.