Neural Architecture Search (NAS), which automates the discovery of efficient neural networks, has demonstrated substantial potential in achieving state of the art performance in a variety of domains such as image classification and language understanding. In most NAS techniques, training of a neural network is considered a separate task or a performance estimation strategy to perform the architecture search. We demonstrate that network architecture and its coefficients can be learned together by unifying concepts of evolutionary search within a population based traditional training process. The consolidation is realised by cleaving the training process into pieces and then put back together in combination with evolution based architecture search operators. We show the competence and versatility of this concept by using datasets from two different domains, CIFAR-10 for image classification and PAMAP2 for human activity recognition. The search is constrained using minimum and maximum bounds on architecture parameters to restrict the size of neural network from becoming too large. Beginning the search from random untrained models, it achieves a fully trained model with a competent architecture, reaching an accuracy of 92.5% and 94.36% on CIFAR-10 and PAMAP2 respectively.
Evolutionary algorithms have been actively studied for dynamic optimization problems in the last two decades, however the research is mainly focused on problems with large, periodical or abrupt changes during the optimization. In contrast, this paper concentrates on gradually changing environments with an additional imposition of a saturating objective function. This work is motivated by an evolutionary neural architecture search methodology where a population of Convolutional Neural Networks (CNNs) is evaluated and iteratively modified using genetic operators during the training process. The objective of the search, namely the prediction accuracy of a CNN, is a continuous and slow moving target, increasing with each training epoch and eventually saturating when the training is nearly complete. Population diversity is an important consideration in dynamic environments wherein a large diversity restricts the algorithm from converging to a small area of the search space while the environment is still transforming. Our proposed algorithm adaptively influences the population diversity, depending on the rate of change of the objective function, using disruptive crossovers and non-elitist population replacements. We compare the results of our algorithm with a traditional evolutionary algorithm and demonstrate that the proposed modifications improve the algorithm performance in gradually saturating dynamic environments.
Machine learning has inadvertently pioneered the transition of big data into big knowledge. Machine learning models absorb and incorporate knowledge from large scale data through training and can be regarded as a representation of the knowledge learnt. There are multitude of use cases where this acquired knowledge can be used to enhance future applications or speed up the training of new models. Yet, the efficient sharing, exploitation and reusability of this knowledge remains a challenge. In this paper we propose a framework for deep learning models that facilitates the reuse of model architectures, transfer coefficients between models for knowledge composition and updates, and apply compression and pruning techniques for efficient storage and communication. We discuss the framework and its application in the context of Knowledge Centric Networking (KCN) and demonstrate the framework potential through various experiments, i.e. when knowledge has to be updated to accommodate new (raw) data or to reduce complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.