Chemical control and the use of resistant cultivars. Resistance has been documented in populations of P. fusca to some of the chemicals registered for control.
Cucurbit powdery mildew caused by Podosphaera fusca limits crop production in Spain. Since its management is strongly dependent on chemicals, the rational design of control programmes requires a good understanding of the fungicide resistance phenomenon in field populations. Fifty single-spore isolates of P. fusca were tested for sensitivity to three quinone-outside inhibiting (QoI) fungicides: azoxystrobin, kresoxim-methyl and trifloxystrobin. Minimum inhibitory concentration (MIC) values for QoI-sensitive isolates were found to range from 0.25 to 10 lg ml )1 for azoxystrobin to 5-25 lg ml )1 for kresoximmethyl, using a leaf disc-based bioassay. High levels of cross-resistance to QoI fungicides were found. Eleven isolates showed resistance to the three QoI fungicides tested with MIC and EC 50 values >500 lg ml )1 resulting in RF values as high as >715 and >1000 for trifloxystrobin and azoxystrobin, respectively. A survey of P. fusca QoI resistance was carried out in different provinces located in the south central area of Spain during the cucurbit growing seasons in 2002, 2003 and 2004. Examination of a collection of 250 isolates for QoI resistance revealed that 32% were resistant to the three fungicides tested; the provinces of Ciudad Real, Co´rdoba and Murcia being the locations with the highest frequencies of resistance (44-74%). By contrast, no resistance was found in Badajoz, and relatively low frequencies were observed in Almerı´a and Valencia (10-13%). Nearly 50% of resistant isolates were collected from melon plants. Based on these data, recommendations about the use of QoI fungicides for cucurbit powdery mildew management in the sampled areas are made.
Botrytis cinerea, the causal agent of gray mold disease, is one of the most important plant-pathogenic fungi affecting strawberry. During the last decade, control of gray mold disease in the southeastern United States has largely been dependent on captan and the use of at-risk fungicides with single-site modes of action, including a combination of the quinone outside inhibitor (QoI) fungicide pyraclostrobin and succinate dehydrogenase inhibitor (SDHI) fungicide boscalid formulated as Pristine 38WG. Reports about loss of efficacy of Pristine in experimental fields in North Carolina prompted us to collect and examine 216 single-spore isolates from 10 conventional fields and 1 organic field in North Carolina and South Carolina in early summer 2011. Sensitivity to pyraclostrobin or boscalid was determined using a conidial germination assay with previously published discriminatory doses. Pyraclostrobin- and pyraclostrobin+boscalid-resistant isolates were found in all conventional fields (with some populations revealing no sensitive isolates) and in the organic field. Among the isolates collected, 66.7% were resistant to pyraclostrobin and 61.5% were resistant to both pyraclostrobin and boscalid. No isolates were identified that were resistant to boscalid but sensitive to pyraclostrobin, indicating that dual resistance may have derived from a QoI-resistant population. The molecular basis of QoI and SDHI fungicide resistance was determined in a subset of isolates. Polymerase chain reaction–restriction fragment length polymorphism analysis of the partial cytochrome b (CYTB) gene showed that pyraclostrobin-resistant isolates possessed the G143A mutation known to confer high levels of QoI fungicide resistance in fungi. Boscalid-resistant isolates revealed point mutations at codon 272 leading to the substitution of histidine to arginine (H272R) or tyrosine (H272Y), affecting the third Fe-S cluster region of the iron-sulfur protein (SdhB) target of SDHIs. The results of the study show that resistance to QoI fungicides and dual resistance to QoI and SDHI fungicides is common in B. cinerea from strawberry fields in the Carolinas. Resistant strains were more frequent in locations heavily sprayed with QoI and SDHI fungicides. However, resistance to both fungicides was also found in the unsprayed, organic field, indicating that some resistant strains may have been introduced from the nursery.
Gray mold, caused by the fungal pathogen Botrytis cinerea, is one of the most destructive diseases of small fruit crops and control is largely dependent on the application of fungicides. As part of a region-wide resistance-monitoring program that investigated 1,890 B. cinerea isolates from 189 fields in 10 states of the United States, we identified seven isolates (0.4%) from five locations in four different states with unprecedented resistance to all seven Fungicide Resistance Action Committee (FRAC) codes with single-site modes of action including FRAC 1, 2, 7, 9, 11, 12, and 17 registered in the United States for gray mold control. Resistance to thiophanate-methyl, iprodione, boscalid, pyraclostrobin, and fenhexamid was based on target gene mutations that conferred E198A and F200Y in β-tubulin, I365N/S in Bos1, H272R/Y in SdhB, G143A in Cytb, and T63I and F412S in Erg27. Isolates were grouped into MDR1 and MDR1h phenotypes based on sensitivity to fludioxonil and variations in transcription factor mrr1. MDR1h isolates had a previously described 3-bp deletion at position 497 in mrr1. Expression of ABC transporter atrB was increased in MDR1 isolates but highest in MDR1h isolates. None of the isolates with seven single resistances (SR) had identical nucleotide variations in target genes, indicating that they emerged independently. Multifungicide resistance phenotypes did not exhibit significant fitness penalties for the parameters used in this study, but MDR1h isolates produced more sclerotia at low temperatures and exhibited increased sensitivity to salt stress. In this study we show that current resistance management strategies have not been able to prevent the geographically independent development of resistance to all seven site-specific fungicides currently registered for gray mold control in the United States and document the presence of MDR1h in North America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.