Urban areas built on old lacustrine basins in central Mexicoshow subsidence related to creep-fault processes. These processes are highly dynamic and enhanced by aquifer water extraction and El Niflo events. The affected cities are Morelia, Salamanca, Silao, Celaya, Aguascalientes, and Querdtaro, with a global population of around 2.5 million, and considerable industrial assets. The first three cities show NE-SW creep-fault trends, while in the remaining the trend is N-S. The subsidence rate varies: 2-3 cm/year at Salamanca, 4-6 cm/year at Morelia and Querdtaro, and 6-8 cm/year at Celaya. In order to preliminarily evaluate the effects of the creep-faults, we performed a series of nondestructive ground penetrating radar surveys in the city of Morelia, that complement concurrent geological studies of the area. We report herein results in three locations where the surface expression of the faults is well defined, including substantial damage to homes and buildings. One of the objectives was to determine the length of the disturbance, perpendicular to the faults' trends. Using 50 Mhz antennas we reached an exploration depth of around 10 m in sandstone-bearing lacustrine deposits and lava flows.In most cases the faults show low-angle dips that vary with depth in the main fault. Additional, synthetic and antithetic faults are developed in the disturbed area of the main fault, which we define as the influence zone of the main disturbance. We find that this zone varies from 15 to 50 m on both sides of the fault, although it tends to be larger on the down thrown block. Faulting appears to be controlled by geological formations within the first 10-15 m in depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.