Aqueous acrylic-polyurethane hybrid emulsions were prepared by semibatch emulsion polymerization of a mixture of acrylic monomers (butyl acrylate, methyl methacrylate, and acrylic acid) in the presence of polyurethane dispersion. Equivalent physical blends were prepared by mixing acrylic emulsion and polyurethane dispersion. The weight ratio between acrylic and polyurethane components varied to obtain different emulsion properties, microphase structure, and mechanical film properties of hybrid emulsions and physical blends. Particle size and molecular mass measurements, scanning electron microscopy, glass transition temperature, and rheological measurements performed characterization of the latex system. The mechanical properties were investigated by measuring tensile strength and Koenig hardness of dried films. The experimental results indicate better acrylic-polyurethane compatibility in hybrid emulsions than in physical blends, resulting in improved chemical and mechanical properties.
ABSTRACT:The effect of various reaction parameters on the rate of polymerization, R p , and on the particle size and morphology of aqueous acrylic-polyurethane hybrid dispersions, prepared by semibatch emulsion polymerization, was investigated. The particles of polyurethane dispersion were used as seeds during the polymerization of acrylic component: methyl methacrylate (MMA), butyl acrylate (BA), and a mixture of MMA and BA with the ratio of 1:1. These emulsions were found to form structured polymer particles in aqueous media using scanning electron microscopy. The kinetics of the emulsion polymerization was studied on the basis of Wessling's model. The influence of emulsifier and initiator concentrations, including the monomer feed rates, R m , on the rates of polymerization and on the properties of the resulting dispersions were studied. The number of particles and the particle size were also measured during the polymerization process. The final values were found to be independent of the concentration of the emulsifier, initiator and the monomer feed rate in monomer starved conditions. In the steady-state conditions, during the seeded semibatch hybrid emulsion polymerization, the rate of polymerization and the monomer feed rate followed the Wessling relationship 1/R p ϭ 1/K ϩ 1/R m . The dispersions MMA/PU, BA/PU, and MMA/BA/PU have K values of 0.0441, 0.0419 and 0.0436 mol/min, respectively. The seeded BA/PU hybrid polymerization proceeded according to Smith-Ewart Case I kinetics, while the MMA/PU hybrid emulsions demonstrate Case II of the Smith-Ewart kinetic model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.