The aim of this article is to determine the socioeconomic level (SEL) with disaggregation of the Basic Statistical Area (BSA) in the Mexican Republic. The methodology used is the one established by the Mexican Association of Market Research Agencies (AMAI) along with the National Institute of Statistics and Geography (INEGI). The Clustering of the BSAs was carried out according to variables contained in the Population and Housing Census of 2010, through Gaussian mixture models, learning neural networks and finally, by defining the labels corresponding to each SEL. We found the existence of a representative SEL for each BSA. In addition, the definition of each socioeconomic level shows good results with an average of 90.86% of correctly labeled elements.
El objetivo de este artículo es identificar la metodología de clusterización más apropiada para aplicarse en el sector restaurantero de la Zona Metropolitana de Guadalajara (ZMG). Se llevó a cabo un recuento de las distintas técnicas de clusterización espacial, para después identificar que la más conveniente es la técnica de Kulldorff, la cual fue utilizada para mapear los clústeres de los restaurantes existentes en la metrópoli. Los resultados muestran diez clústeres de restaurantes en la ZMG, siete de ellos con alta concentración de unidades económicas. El presente estudio es innovador respecto a la detección de clústeres en la industria restaurantera de la ZMG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.