Reactive intermediates are involved in many chemical transformations. However, their characterization is a great challenge because of their short lifetimes and high reactivities. Arynes, formally derived from arenes by the removal of two hydrogen atoms from adjacent carbon atoms, are prominent reactive intermediates that have been hypothesized for more than a century. Their rich chemistry enables a widespread use in synthetic chemistry, as they are advantageous building blocks for the construction of polycyclic compounds that contain aromatic rings. Here, we demonstrate the generation and characterization of individual polycyclic aryne molecules on an ultrathin insulating film by means of low-temperature scanning tunnelling microscopy and atomic force microscopy. Bond-order analysis suggests that a cumulene resonance structure is the dominant one, and the aryne reactivity is preserved at cryogenic temperatures. Our results provide important insights into the chemistry of these elusive intermediates and their potential application in the field of on-surface synthesis.
The acene series represents a unique model system to investigate the intriguing electronic properties of extended π-electron structures in the one-dimensional limit, which are important for applications in electronics and spintronics and for the fundamental understanding of electronic transport. Here we present the on-surface generation of the longest acene obtained so far:Dodecacene. Scanning tunneling spectroscopy gives access to the energy position and spatial distribution of its electronic states on the Au(111) surface. We observe that, after a progressive closing of the gap and a stabilization to about 1 eV at the length of decacene and undecacene, the energy gap of dodecacene unexpectedly increases to 1.4 eV. Considering the acene series as an exemplary general case, we discuss the evolution with length of the single tunneling resonances in comparison with ionization energy, electronic affinity, and optical gap.
Acenes are intriguing molecules with unique electronic properties. The difficulties in their preparation owing to low stability under ambient conditions are apparent because successful syntheses of long unsubstituted acenes are still scarce, in spite of the great attention they have attracted. Only unsubstituted acenes up to heptacene have been isolated in bulk, with nonacene being the largest acene detected to date. Herein we use on-surface assisted reduction of tetraepoxy decacene precursors on Au(111) as the key step to generate unprecedented decacene which is visualized and its electronic resonances studied by scanning tunneling microscopy (STM) and spectroscopy (STS).
Small‐molecule‐based multimodal and multifunctional imaging probes play prominent roles in biomedical research and have high clinical translation ability. A novel multimodal imaging platform using base‐catalyzed double addition of thiols to a strained internal alkyne such as bicyclo[6.1.0]nonyne has been established in this study, thus allowing highly selective assembly of various functional units in a protecting‐group‐free manner. Using this molecular platform, novel dual‐modality (PET and NIRF) uPAR‐targeted imaging probe: 64Cu‐CHS1 was prepared and evaluated in U87MG cells and tumor‐bearing mice models. The excellent PET/NIRF imaging characteristics such as good tumor uptake (3.69 %ID/g at 2 h post‐injection), high tumor contrast, and specificity were achieved in the small‐animal models. These attractive imaging properties make 64Cu‐CHS1 a promising probe for clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.