It is difficult to overstate the cultural and biological impacts that the domestication of plants and animals has had on our species. Fundamental questions regarding where, when, and how many times domestication took place have been of primary interest within a wide range of academic disciplines. Within the last two decades, the advent of new archaeological and genetic techniques has revolutionized our understanding of the pattern and process of domestication and agricultural origins that led to our modern way of life. In the spring of 2011, 25 scholars with a central interest in domestication representing the fields of genetics, archaeobotany, zooarchaeology, geoarchaeology, and archaeology met at the National Evolutionary Synthesis Center to discuss recent domestication research progress and identify challenges for the future. In this introduction to the resulting Special Feature, we present the state of the art in the field by discussing what is known about the spatial and temporal patterns of domestication, and controversies surrounding the speed, intentionality, and evolutionary aspects of the domestication process. We then highlight three key challenges for future research. We conclude by arguing that although recent progress has been impressive, the next decade will yield even more substantial insights not only into how domestication took place, but also when and where it did, and where and why it did not.The domestication of plants and animals was one of the most significant cultural and evolutionary transitions in the ∼200,000-y history of our species. Investigating when, where, and how domestication took place is therefore crucial for understanding the roots of complex societies. Domestication research is equally important to scholars from a wide range of disciplines, from evolutionary biology to sustainability science (1, 2). Research into both the process and spatiotemporal origins of domestication has accelerated significantly over the past decade through archaeological research, advances in DNA/ RNA sequencing technology, and methods used to recover and formally identify changes in interactions among plants and animals leading to domestication (2-4). In the spring of 2011, 25 scholars with a central interest in domestication and representing the fields of genetics, archaeobotany, zooarchaeology, geoarchaeology, and archaeology met at the National Evolutionary Synthesis Center to discuss recent progress in domestication research and identify challenges for the future. Our goal was to begin reconsidering plant and animal domestication within an integrated evolutionary and cultural framework that takes into account not just new genetic and archaeological data, but also ideas related to epigenetics, plasticity, geneby-environment interactions, gene-culture coevolution, and niche construction. Each of these concepts is relevant to understanding phenotypic change, heritability, and selection, and they are all fundamental components of the New Biology (5) and Expanded Modern Evolutionary Synthesis (6).
Questions that still surround the origin and early dispersals of maize (Zea mays L.) result in large part from the absence of information on its early history from the Balsas River Valley of tropical southwestern Mexico, where its wild ancestor is native. We report starch grain and phytolith data from the Xihuatoxtla shelter, located in the Central Balsas Valley, that indicate that maize was present by 8,700 calendrical years ago (cal. B.P.). Phytolith data also indicate an early preceramic presence of a domesticated species of squash, possibly Cucurbita argyrosperma. The starch and phytolith data also allow an evaluation of current hypotheses about how early maize was used, and provide evidence as to the tempo and timing of human selection pressure on 2 major domestication genes in Zea and Cucurbita. Our data confirm an early Holocene chronology for maize domestication that has been previously indicated by archaeological and paleoecological phytolith, starch grain, and pollen data from south of Mexico, and reshift the focus back to an origin in the seasonal tropical forest rather than in the semiarid highlands.early Holocene ͉ maize domestication ͉ phytoliths ͉ starch grains
The nature and causes of the disappearance of Neanderthals and their apparent replacement by modern humans are subjects of considerable debate. Many researchers have proposed biologically or technologically mediated dietary differences between the two groups as one of the fundamental causes of Neanderthal disappearance. Some scenarios have focused on the apparent lack of plant foods in Neanderthal diets. Here we report direct evidence for Neanderthal consumption of a variety of plant foods, in the form of phytoliths and starch grains recovered from dental calculus of Neanderthal skeletons from Shanidar Cave, Iraq, and Spy Cave, Belgium. Some of the plants are typical of recent modern human diets, including date palms ( Phoenix spp.), legumes, and grass seeds (Triticeae), whereas others are known to be edible but are not heavily used today. Many of the grass seed starches showed damage that is a distinctive marker of cooking. Our results indicate that in both warm eastern Mediterranean and cold northwestern European climates, and across their latitudinal range, Neanderthals made use of the diverse plant foods available in their local environment and transformed them into more easily digestible foodstuffs in part through cooking them, suggesting an overall sophistication in Neanderthal dietary regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.