Numerical simulations of the cardiovascular system are growing in popularity due to the increasing availability of computational power, and their proven contribution to the understanding of pathodynamics and validation of medical devices with in-silico trials as a potential future breakthrough. Such simulations are performed on volumetric meshes reconstructed from patient-specific imaging data. These meshes are most often unstructured, and result in a brutally large amount of elements, significantly increasing the computational complexity of the simulations, whilst potentially adversely affecting their accuracy. To reduce such complexity, we introduce a new approach for fully automatic generation of higher-order, structured hexahedral meshes of tubular structures, with a focus on healthy blood vessels. The structures are modeled as skeleton-based convolution surfaces. From the same skeleton, the topology is captured by a block-structure, and the geometry by a higher-order surface mesh. Grading may be induced to obtain tailored refinement, thus resolving, e.g., boundary layers. The volumetric meshing is then performed via transfinite mappings. The resulting meshes are of arbitrary order, their elements are of good quality, while the spatial resolution may be as coarse as needed, greatly reducing computing time. Their suitability for practical applications is showcased by a simulation of physiological blood flow modelled by a generalised Newtonian fluid in the human aorta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.