The problem of finding the optimal deployment of sensors is becoming increasingly important with the growing expansion of the Internet of Things paradigm and increased usage of sensor networks in different applications. During the installation of sensor networks, sensor placement directly affects the performance of the system. The general problem of determining the position and orientation of the sensors with the goal of optimal coverage of a given environment is NP-hard. In this manuscript, an effective stochastic method for the placement of sensors in arbitrarily given two-dimensional and three-dimensional environments is proposed. The method uses models of generic isotropic and directional sensors with the defined probabilistic coverage. The optimization function combining the environment and sensor models based on the area coverage metric is proposed. Three optimization algorithms are compared with regard to obtained coverage score, execution time, and reliability, and the results are presented and discussed.
Gait is a unique biometric trait with several useful properties. It can be recognized remotely and without the cooperation of the individual, with low-resolution cameras, and it is difficult to obscure. Therefore, it is suitable for crime investigation, surveillance, and access control. Existing approaches for gait recognition generally belong to the supervised learning domain, where all samples in the dataset are annotated. In the real world, annotation is often expensive and time-consuming. Moreover, convolutional neural networks (CNNs) have dominated the field of gait recognition for many years and have been extensively researched, while other recent methods such as vision transformer (ViT) remain unexplored. In this manuscript, we propose a self-supervised learning (SSL) approach for pretraining the feature extractor using the DINO model to automatically learn useful gait features with the vision transformer architecture. The feature extractor is then used for extracting gait features on which the fully connected neural network classifier is trained using the supervised approach. Experiments on CASIA-B and OU-MVLP gait datasets show the effectiveness of the proposed approach.
Each individual describes unique patterns during their gait cycles. This information can be extracted from the live video stream and used for subject identification. In appearance based recognition methods, this is done by tracking silhouettes of persons across gait cycles. In recent years, there has been a profusion of sensors that in addition to RGB video images also provide depth data in real-time. When such sensors are used for gait recognition, existing RGB appearance based methods can be extended to get a substantial gain in recognition accuracy. In this paper, this is accomplished using information fusion techniques that combine features from extracted silhouettes, used in traditional appearance based methods, and the height feature that can now be estimated using depth data. The latter is estimated during the silhouette extraction step with minimal additional computational cost. Two approaches are proposed that can be implemented easily as an extension to existing appearance based methods. An extensive experimental evaluation was performed to provide insights into how much the recognition accuracy can be improved. The results are presented and discussed considering different types of subjects and populations of different height distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.