The FEC limit paradigm is the prevalent practice for designing optical communication systems to attain a certain bit-error rate (BER) without forward error correction (FEC). This practice assumes that there is an FEC code that will reduce the BER after decoding to the desired level. In this paper, we challenge this practice and show that the concept of a channel-independent FEC limit is invalid for soft-decision bitwise decoding. It is shown that for low code rates and high order modulation formats, the use of the soft FEC limit paradigm can underestimate the spectral efficiencies by up to 20%. A better predictor for the BER after decoding is the generalized mutual information, which is shown to give consistent post-FEC BER predictions across different channel conditions and modulation formats. Extensive optical full-field simulations and experiments are carried out in both the linear and nonlinear transmission regimes to confirm the theoretical analysis.
In this paper, we implement an optical fiber communication system as an end-to-end deep neural network, including the complete chain of transmitter, channel model, and receiver. This approach enables the optimization of the transceiver in a single end-to-end process. We illustrate the benefits of this method by applying it to intensity modulation/direct detection (IM/DD) systems and show that we can achieve bit error rates below the 6.7% hard-decision forward error correction (HD-FEC) threshold. We model all componentry of the transmitter and receiver, as well as the fiber channel, and apply deep learning to find transmitter and receiver configurations minimizing the symbol error rate. We propose and verify in simulations a training method that yields robust and flexible transceivers that allow-without reconfiguration-reliable transmission over a large range of link dispersions. The results from end-to-end deep learning are successfully verified for the first time in an experiment. In particular, we achieve information rates of 42 Gb/s below the HD-FEC threshold at distances beyond 40 km. We find that our results outperform conventional IM/DD solutions based on 2 and 4 level pulse amplitude modulation (PAM2/PAM4) with feedforward equalization (FFE) at the receiver. Our study is the first step towards end-to-end deep learning-based optimization of optical fiber communication systems.
The maximum data throughput in a single mode optical fibre is a function of both the signal bandwidth and the wavelength-dependent signal-to-noise ratio (SNR). In this paper, we investigate the use of hybrid discrete Raman & rare-earth doped fibre amplifiers to enable wide-band signal gain, without spectral gaps between amplification bands. We describe the widest continuous coherent transmission bandwidth experimentally demonstrated to date of 16.83 THz, achieved by simultaneously using the S-, C-and L-bands. The variation of fibre parameters over this bandwidth, together with the hybrid amplification method result in a significant SNR wavelengthdependence. To cope with this, the signal was optimised for each SNR, wavelength and transmission band. By using a system-tailored set of geometrically shaped constellations, we demonstrate the transmission of 660⇥25 GBd channels over 40 km, resulting in a record single mode fibre net throughput of 178.08 Tbit/s. Index Terms-Broadband transmission system, high order modulation format, geometric shaping.
Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity.
In this paper, we experimentally demonstrate the benefit of polarization insensitive dual-band optical phase conjugation for up to ten 400Gbit/s optical super-channels using a Raman amplified transmission link with a realistic span length of 75km. We demonstrate that the resultant increase in transmission distance may be predicted analytically if the detrimental impacts of power asymmetry and polarization mode dispersion are taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.