Multispectral satellite imagery offers a new perspective for spatial modelling, change detection and land cover classification. The increased demand for accurate classification of geographically diverse regions led to advances in object-based methods. A novel spatiotemporal method is presented for object-based land cover classification of satellite imagery using a Graph Neural Network. This paper introduces innovative representation of sequential satellite images as a directed graph by connecting segmented land region through time. The method’s novel modular node classification pipeline utilises the Convolutional Neural Network as a multispectral image feature extraction network, and the Graph Neural Network as a node classification model. To evaluate the performance of the proposed method, we utilised EfficientNetV2-S for feature extraction and the GraphSAGE algorithm with Long Short-Term Memory aggregation for node classification. This innovative application on Sentinel-2 L2A imagery produced complete 4-year intermonthly land cover classification maps for two regions: Graz in Austria, and the region of Portorož, Izola and Koper in Slovenia. The regions were classified with Corine Land Cover classes. In the level 2 classification of the Graz region, the method outperformed the state-of-the-art UNet model, achieving an average F1-score of 0.841 and an accuracy of 0.831, as opposed to UNet’s 0.824 and 0.818, respectively. Similarly, the method demonstrated superior performance over UNet in both regions under the level 1 classification, which contains fewer classes. Individual classes have been classified with accuracies up to 99.17%.
Acts of fraud have become much more prevalent in the financial industry with the rise of technology and the continued economic growth in modern society. Fraudsters are evolving their approaches continuously to exploit the vulnerabilities of the current prevention measures in place, many of whom are targeting the financial sector. To overcome and investigate financial frauds, this paper presents STALITA, which is an innovative platform for the analysis of bank transactions. STALITA enables graph-based data analysis using a powerful Neo4j graph database and the Cypher query language. Additionally, a diversity of other supporting tools, such as support for heterogeneous data sources, force-based graph visualisation, pivot tables, and time charts, enable in-depth investigation of the available data. In the Results section, we present the usability of the platform through real-world case scenarios.
Besednovrstno označevanje je postopek razpoznavanja besednih vrst v besedilu. Algoritem FLORS učinkovito izvaja besednovrstno označevanje z lokalnim kontekstom posamezne besede. Včlanku smo algoritem FLORS nadgradili za besednovrstno označevanje slovenskega jezika. Izboljšavo smo dosegli z odstranitvijo morfoloških značilk, vezanih na angleški jezik. Uporabili smo tudi analizo poglavitnih komponent. Z opisano spremembo nabora značilk smo dosegli uspešnost 85,16 %. Ugotavljamo, da se algoritem lahko uporabi za označevanje slovenskega jezika.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.