This paper reviews current remediation technologies that use chelating agents for the 16 mobilization and removal of potentially toxic metals from contaminated soils. These 17 processes can be done in situ as enhanced phytoextraction, chelant enhanced electrokinetic 18 extraction and soil flushing, or ex situ as the extraction of soil slurry and soil heap/column 19 leaching. Current proposals on how to treat and recycle waste washing solutions after soil is 20 washed are discussed. The major controlling factors in phytoextraction and possible strategies 21 for reducing the leaching of metals associated with the application of chelants are also 22 reviewed. Finally, the possible impact of abiotic and biotic soil factors on the toxicity of 23 metals left after the washing of soil and enhanced phytoextraction are briefly addressed. 24 25
Using a soil column experiment, we compared the effect of a single dose and weekly additions of ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedissuccinate (EDDS) on the uptake of Pb, Zn, and Cd by Chinese cabbage [Brassica rapa L. subsp. pekinensis (Lour.) Hanelt], and on the leaching of heavy metals through the soil profile. The analysis of plant material revealed that both chelates increased the concentrations of Pb and, to a lesser extent, also of Zn and Cd in the leaves of the test plant. The most effective applications were single doses of 10 mmol EDTA and EDDS kg(-1) soil, which caused the concentrations of Pb in the shoots to increase 94.2- and 102.3-fold, respectively, relative to the control. The same dose of EDTA increased the concentration of Zn and Cd in the leaves 4.3- and 3.8-fold and of EDDS 4.7- and 3.5-fold, respectively. In treatments with weekly additions and lower concentrations of both chelates, EDTA was more effective than EDDS in increasing the plant uptake of Pb. In soil columns treated with weekly additions of 10 mmol kg(-1) EDTA, on average 22.7, 7.0, and 39.8% of initial total Pb, Zn, and Cd in the soil were leached through the soil profile. The same amount of EDDS caused much lower leaching of Pb and Cd--only 0.8 and 1.5% of initial total concentrations. Leaching of Zn, 6.2% of the total concentration, was comparable with the EDTA treatment. A biotest with red clover (Trifolium pratense L.) indicated a greater phytotoxic effect of EDTA than EDDS addition. EDDS was also less toxic to soil fungi, as determined by phospholipid fatty acid (PLFA) analysis, and caused less stress to soil microorganisms, as indicated by the trans to cis PLFA ratio. Chelate addition did not prevent the development of arbuscular mycorrhiza on red clover.
The Pb, Zn and Cd phytoextraction potential of 14 different plants was assessed in a chelate induced phytoextraction experiment. In the used soil heavy metals mainly reside in carbonate, organic matter, and residual soil fractions. The addition of a chelate, 5 mmol/kg ethylenediamine-tetracetic acid (EDTA), increased the proportion of phytoavailable Pb, Zn and Cd in the soil (dissolved in soil solution and exchangeable from soil colloids), and also their uptake by tested plants up to 48 times (Sinapis alba), 4.6 times (Raphanus sativus oleiformis), and 3.3 times (Amaranthus spp.), respectively, compared to the control. The biodegradable chelate ethylenediamine-disuccinic acid (EDDS) was generally less effective (tested on a selection of 4 plant species), except for Cannabis sativa. In a treatment with 10 mmol/kg EDDS, Pb, Zn and Cd concentrations of 1053 ± 125, 211 ± 16 and 5.4 ± 0.8 mg/kg, respectively, were measured in the biomass of Cannabis sativa and were 105, 2.3 and 31.7 times higher, respectively, than in the control treatment. The calculated Pb phytoextraction potential of Cannabis sativa amounted to 26.3 kg/ha.
Chelate-induced remediation has been proposed as an effective tool for the extraction of lead (Pb) from contaminated soils by plants. However, side-effects, mainly mobilization and leaching of Pb, raise environmental concerns. Biodegradable, synthetic organic chelate ethylenediaminedisuccinic acid (EDDS), and commonly used ethylenedimanetetraacetic acid (EDTA) were used for induced phytoextraction with a test plant Brassica rapa and in situ washing of soil contaminated with 1350 mg/kg of Pb. Horizontal permeable barriers were placed 20 cm deep in soil columns and tested for their ability to prevent leaching of Pb. The reactive materials in the barriers were nutrient enriched vermiculite, peat or agricultural hydrogel, and apatite. EDTA and EDDS addition increased Pb concentrations in the test plant by 158 and 89 times compared to the control, to 817 and 464 mg/kg, respectively. In EDTA treatments, approximately 25% or more of total initial soil Pb was leached in single cycle of chelate addition. In EDDS treatments, 20% of the initial Pb was leached from columns with no barrier, while barriers with vermiculite or hydrogel and apatite decreased leaching by more than 60 times, to 0.35%. 11.6% of total initial Pb was washed from the soil above the barrier with vermiculite and apatite, where almost all leached Pb was accumulated. Results indicate that use of biodegradable chelate EDDS and permeable barriers may lead to environmentally safe induced Pb phytoextraction and in situ washing of Pb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.